DATA-DRIVEN BUSINESS AND BEHAVIOUR ANALYTICS

THE UNIVERSITY of EDINBURGH

ACADEMIC YEAR 2024/2025

TEAM

Dr. Valerio Restocchi v.restocchi@ed.ac.uk Ognyan Simeonov 0.0.Simeonov@sms.ed.ac.uk

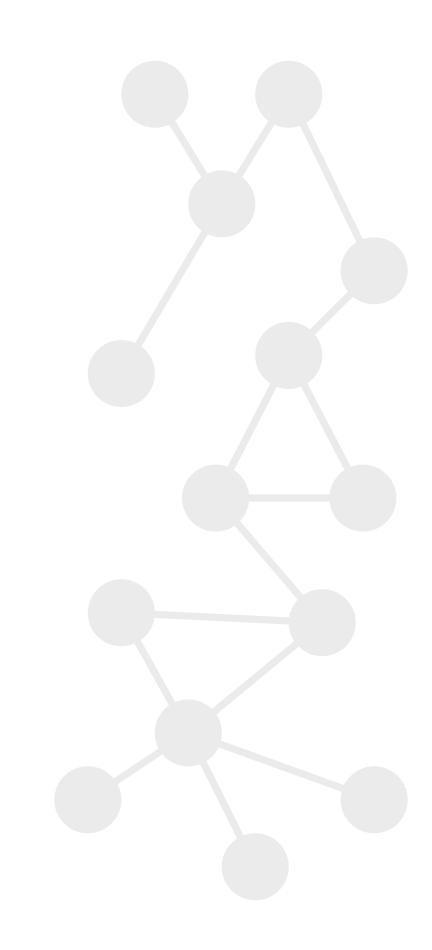
MATERIAL AND INFO LEARN ULTRA <u>https://opencourse.inf.ed.ac.uk/dbba</u>

TUTORIALS

Weekly tutorials from week 3 - in person

Students are expected to attempt the exercises **before attending the tutorial**

COURSEWORK


- **Two** assignments (25% each of final marks)
- First assignment issued on week 4, deadline week 7
- Second assignment issued on week 7, deadline week 11
- Exact dates will be available on the websites

EXAM

50% of final marks

Exam diet: december

More details later this term

MATERIAL

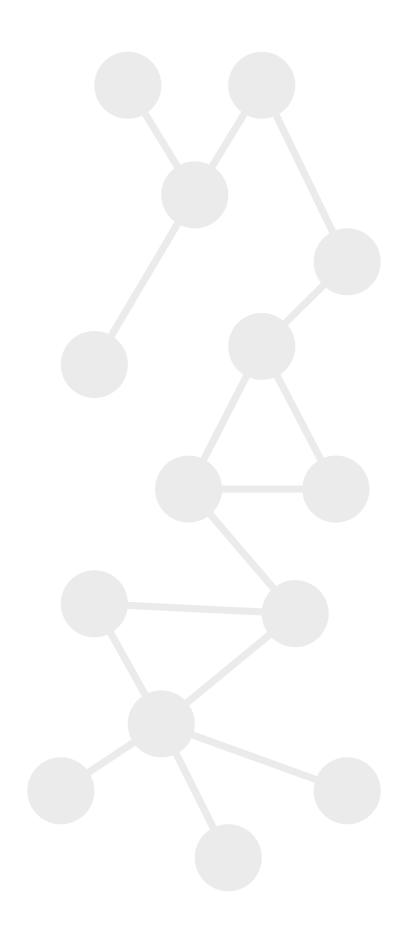
Main textbook for the first part:

Menczer, Fortunato, Davies - A first course in network science

Another good book is:

Barabasi - Network Science (Available for free at <u>www.networksciencebook.com</u>)

Main textbook for the second part:


Delli Gatti et al. - Agent-Based Models for Economics: a Toolkit

Supplementary material will be provided when needed

PIAZZA

Accessible from: LEARN and opencourse

Primary use: Discussion for students

If about current lecture, ask in class

If about current lecture, ask in class

If about anything else ask on Piazza

If about current lecture, ask in class

- If about anything else ask on Piazza
- If about exercises, ask on Piazza **after** the relevant tutorial

If about current lecture, ask in class

- If about anything else ask on Piazza
- If about exercises, ask on Piazza **after** the relevant tutorial
- If about coursework: ask on Piazza, the **TA** or the **lecturer** will answer

HOW TO SUCCESSFULLY TAKE THIS COURSE

Engage during lectures

HOW TO SUCCESSFULLY TAKE THIS COURSE

Engage during lectures

Interact with other students

HOW TO SUCCESSFULLY TAKE THIS COURSE

- Engage during lectures
- Interact with other students
- Learn how to solve problems

1) **Critically** analyse and explain human behaviour based on empirical observations.

1) **Critically** analyse and explain human behaviour based on empirical observations.

2) Apply a range of mathematical and computational modelling techniques to human-related data and decide which one is the most appropriate for a specific task.

1) **Critically** analyse and explain human behaviour based on empirical observations.

2) Apply a range of mathematical and computational modelling techniques to human-related data and decide which one is the most appropriate for a specific task.

3) **Model and simulate realistic social systems** with independent or interacting individuals.

1) **Critically** analyse and explain human behaviour based on empirical observations.

2) Apply a range of mathematical and computational modelling techniques to human-related data and decide which one is the most appropriate for a specific task.

3) **Model and simulate realistic social systems** with independent or interacting individuals.

4) Discuss the legal and **ethical implications** of working with human-related data.

1) **Critically** analyse and explain human behaviour based on empirical observations.

2) Apply a range of mathematical and computational modelling techniques to human-related data and decide which one is the most appropriate for a specific task.

3) **Model and simulate realistic social systems** with independent or interacting individuals.

4) Discuss the legal and **ethical implications** of working with human-related data.

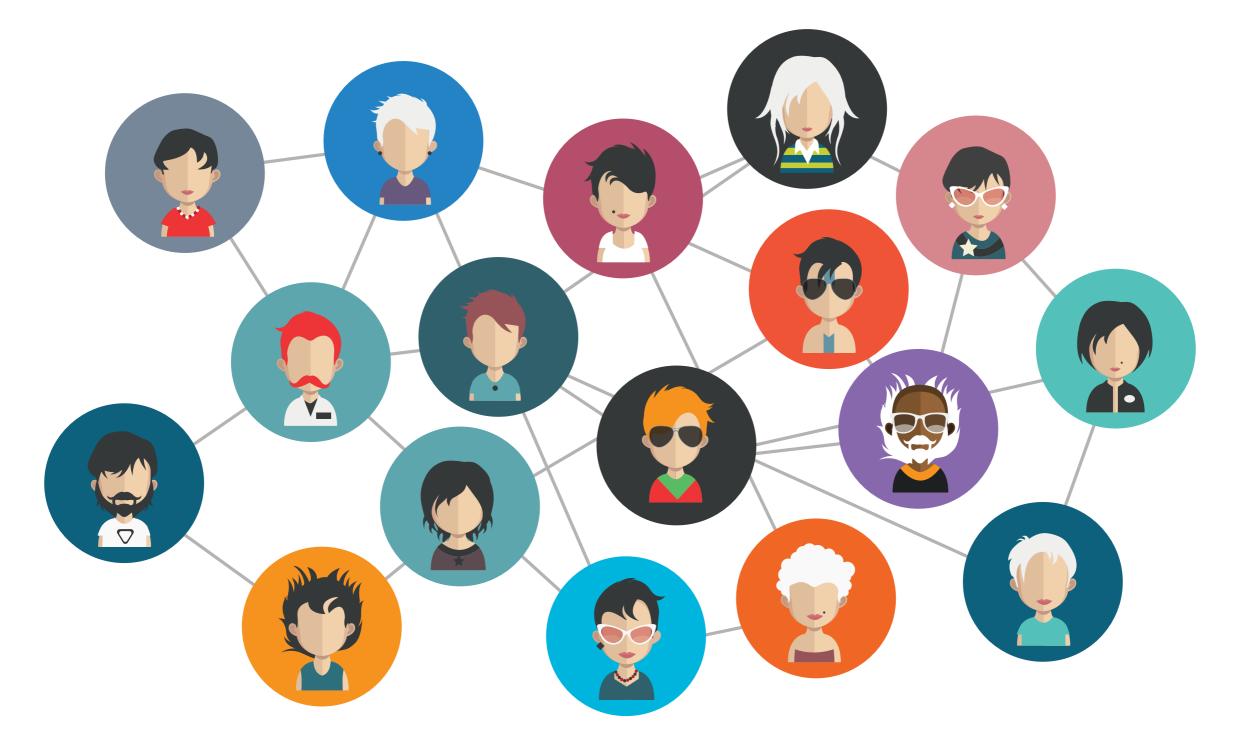
5) **Present** (written/oral) **highly interdisciplinary work** in an understandable and comprehensive manner to people with different backgrounds.

COURSE OVERVIEW

Learn about (socio-economic) complex systems

Networks and social networks

Agent-based models and simulations



COMPLEX SYSTEMS

"I THINK THIS CENTURY WILL BE THE CENTURY OF COMPLEXITY." Stephen Hawking

WHAT ARE COMPLEX SYSTEM?

SOCIO-ECONOMIC COMPLEX SYSTEMS

TWO APPROACHES

Describe the system

TOP-DOWN APPROACH

Describe the elements

BOTTOM-UP APPROACH

MODEL MACRO BEHAVIOUR

DESCRIPTIVE ANALYSIS

MODEL MICRO BEHAVIOUR

EMERGING PATTERNS

DESCRIBE THE SYSTEM Network science

INTERACTION BETWEEN ELEMENTS

UNVEIL PROPERTIES OF A SYSTEM WITH ANALYSIS

RELATED TO DATA SCIENCE

WHEN TO USE Network science

WE DON'T KNOW THE BEHAVIOUR OF ELEMENTS or it is too complicated to model

WE HAVE DATA ON THE BEHAVIOUR OF THE SYSTEM

WE DON'T NEED TO KNOW WHY ELEMENTS Behave in a particular way

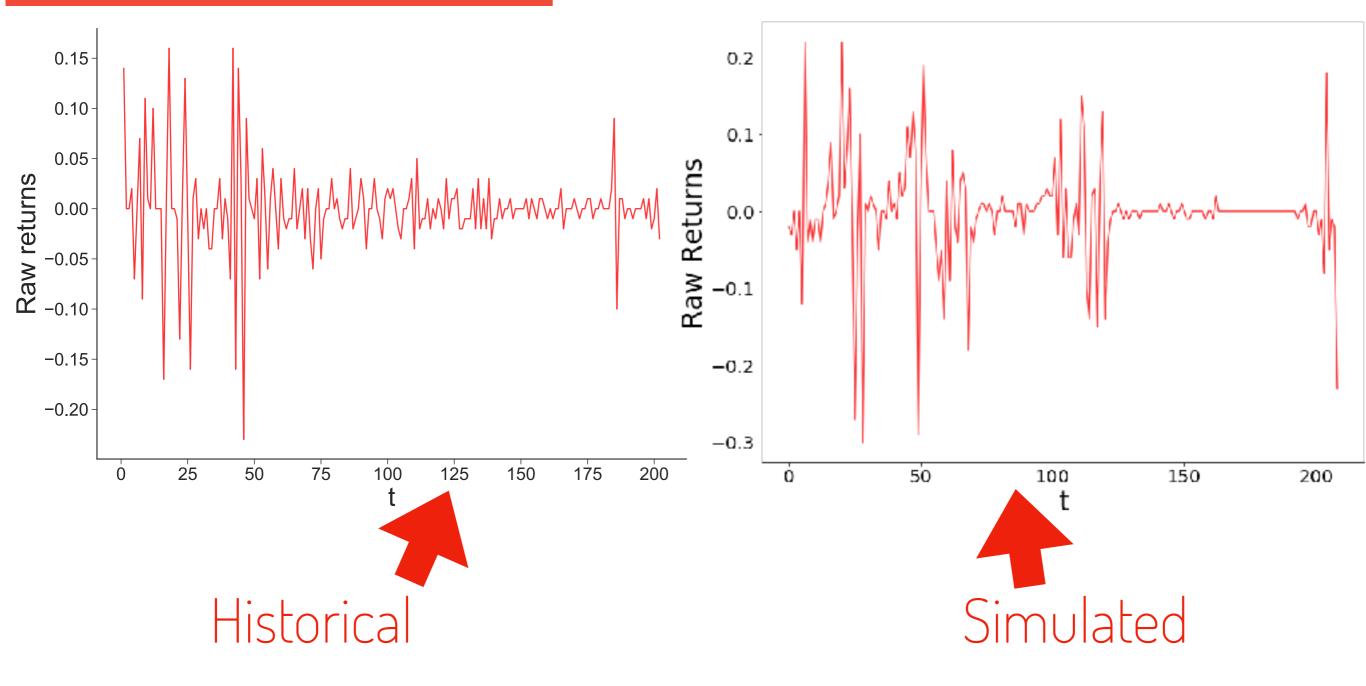
EXAMPLES IN BUSINESS

SOCIAL NETWORKS

INTERBANK NETWORKS

OPINIONS ON MARKETS

EXAMPLES IN BUSINESS


Social networks

EXAMPLE IN BUSINESS

Opinions on markets

DESCRIBE THE ELEMENTS Agent-based modelling

MAY OR MAY NOT HAVE INTERACTIONS BETWEEN ELEMENTS Describe the behaviour of elements

SOCIAL SCIENCE AND PSYCHOLOGY

WHEN TO USE Agent-based modelling

WE DON'T KNOW THE BEHAVIOUR OF THE SYSTEM or it is to complicated to model

WE HAVE DATA (OR THEORIES) ON THE BEHAVIOUR OF THE ELEMENTS

WE NEED TO KNOW WHY THE SYSTEM Behaves in a particular way

EXAMPLES IN BUSINESS

TRADERS IN THE MARKET

CREDIT RISK

MARKETING

EX	AM	PLE	SIN	B	JS	NE	SS	
3.20 1.20)	342.71 (+2.85)	137 04 (-60 01)	60.44 (-55.90) 685.05	60.30 (-0.21)	3.65	-56-29 (-1942-19) 2012-00	-127.65 (-126.77)	1
7.14	31,246.04 (+270.78)	24,413.84 (-21.87)	26,275.30 (+7.62)	30,463.58 (+15.94)	1,014.12	15/648 8 144		
		(-1.49)	(+41.57)	5,453.70 (+113.09)	76.00			

75.41

(-19.36)

150,028.94

(+4.44)

726.98

30

56.61

33.13 (-76.72)

132.89

(+76.22)

156,015.25

(+3.99

16,579

10.

(+6

22

Traders in the market

93.52

(-57.53)

143,653.64

(+0.68)

70)

EXAMPLES IN BUSINESS

Economics focus

Agents of change

Conventional economic models failed to foresee the financial crisis. Could agent-based modelling do better?

Credit risk

EXAMPLES IN BUSINESS

WHY IS THIS COURSE USEFUL?

MANY FINANCIAL INSTITUTIONS AND BUSINESSES Have loads of personal data

SUCH INSTITUTIONS DON'T KNOW HOW TO USE THESE DATA

THEY NEED EXPERTS TO DO SO BUT CAN'T FIND THEM!

WHY IS THIS COURSE USEFUL?

YOU WILL BE THOSE EXPERTS!

THEY NEED EXPERTS TO DO SO BUT CAN'T FIND THEM!

WATCH THIS

The hidden networks of everything https://www.youtube.com/watch?v=RfgjHoVCZwU

Connected: the power of six degrees https://www.youtube.com/watch?v=2rzxAyY7D7k