Discrete Mathematics and Probability Week 10

Chris Heunen

Combinatorics and probability

Axioms of probability

- 1. the probability of any event is non-negative: $P(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

$$\mathsf{P}\big(\bigcup E_i\big)=\sum \mathsf{P}(E_i)$$

How to compute

▶
$$P(E^c) = 1 - P(E)$$

 $\blacktriangleright \mathbf{P}(E \cup F) = \mathbf{P}(E) + \mathbf{P}(F) - \mathbf{P}(E \cap F)$

Conditional probability

Conditional probability: how knowledge influences probability

- Partial information
- How to compute: $P(E | F) = P(E \cap F)/P(F)$
- Reduced sample space
- Axioms
- How to compute: multiplication rule
- Bayes' theorem: link probabilities of related events

• Partition theorem:
$$\mathbf{P}(E) = \sum_{i} \mathbf{P}(E \mid F_i) \cdot \mathbf{P}(F_i)$$

Bayes' theorem:

 $\mathbf{P}(F_i \mid E) = \mathbf{P}(E \mid F_i) \cdot \mathbf{P}(F_i) / \sum \mathbf{P}(E \mid F_j) \cdot \mathbf{P}(F_j)$

Axioms of conditional probability

- 1. conditional probability is non-negative: $P(E \mid) \ge 0$;
- 2. conditional probability of sample space is one: $\mathbf{P}(\Omega | F) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

 $\mathbf{P}\Big(\bigcup E_i \,\Big|\, F\Big) = \sum \mathbf{P}(E_i \,|\, F)$

How to compute

•
$$P(E^c | F) = 1 - P(E | F)$$

•
$$P(E | F) = 1 - P(E^c | F) \le 1$$

- $\blacktriangleright \mathbf{P}(E \cup G \mid F) = \mathbf{P}(E \mid F) + \mathbf{P}(G \mid F) \mathbf{P}(E \cap G \mid F)$
- ▶ If $E \subseteq G$, then $\mathbf{P}(G E | F) = \mathbf{P}(G | F) \mathbf{P}(E | F)$
- Multiplication rule: $\mathbf{P}(E_1 \cap \cdots \cap E_n) = \mathbf{P}(E_1) \cdot \mathbf{P}(E_2 | E_1) \cdot \mathbf{P}(E_3 | E_1 \cap E_2) \cdots \mathbf{P}(E_n | E_1 \cap \cdots \cap E_{n-1})$

Random variables

Standard distributions

Old exam question

Old exam question

Ask me anything!