Discrete Mathematics and Probability

Week 10

Chris Heunen

Combinatorics and probability

- Counting: thinking algorithmically
- Permutations $n!, n!/ k$!
- Combinations $\binom{n}{k}=n!/(k!(n-k)!)$
- Events: what could happen in principle
- Sample space Ω
- Experiments: how can events interact
- Complements, union, intersection
- Probability: quantifying what could happen
- Axioms
- Inclusion-exclusion
- Equally likely outcomes

Axioms of probability

1. the probability of any event is non-negative: $\mathrm{P}(E) \geq 0$;
2. the probability of the sample space is one: $\mathbb{P}(\Omega)=1$;
3. for countably many mutually exclusive events E_{1}, E_{2}, \ldots :

$$
\mathbf{P}\left(\bigcup E_{i}\right)=\sum \mathbf{P}\left(E_{i}\right)
$$

How to compute

- $\mathbf{P}\left(E^{c}\right)=1-\mathbf{P}(E)$
- $\mathbf{P}(E \cup F)=\mathbf{P}(E)+\mathbf{P}(F)-\mathbf{P}(E \cap F)$

Conditional probability

- Conditional probability: how knowledge influences probability
- Partial information
- How to compute: $\mathbf{P}(E \mid F)=\mathbf{P}(E \cap F) / \mathbf{P}(F)$
- Reduced sample space
- Axioms
- How to compute: multiplication rule
- Bayes' theorem: link probabilities of related events
- Partition theorem: $\mathbf{P}(E)=\sum_{i} \mathbf{P}\left(E \mid F_{i}\right) \cdot \mathbf{P}\left(F_{i}\right)$
- Bayes' theorem:
$\mathbf{P}\left(F_{i} \mid E\right)=\mathbf{P}\left(E \mid F_{i}\right) \cdot \mathbf{P}\left(F_{i}\right) / \sum \mathbf{P}\left(E \mid F_{j}\right) \cdot \mathbf{P}\left(F_{j}\right)$

Axioms of conditional probability

1. conditional probability is non-negative: $\mathrm{P}(E \mid) \geq 0$;
2. conditional probability of sample space is one: $\mathbb{P}(\Omega \mid F)=1$;
3. for countably many mutually exclusive events E_{1}, E_{2}, \ldots :

$$
\mathbf{P}\left(\bigcup E_{i} \mid F\right)=\sum \mathbf{P}\left(E_{i} \mid F\right)
$$

How to compute

- $\mathbf{P}\left(E^{c} \mid F\right)=1-\mathbf{P}(E \mid F)$
- $\mathbf{P}(E \mid F\}=1-\mathbf{P}\left(E^{\mathrm{C}} \mid F\right) \leq 1$
- $\mathbf{P}(E \cup G \mid F)=\mathbf{P}(E \mid F)+\mathbf{P}(G \mid F)-\mathbf{P}(E \cap G \mid F)$
- If $E \subseteq G$, then $\mathbf{P}(G-E \mid F)=\mathbf{P}(G \mid F)-\mathbf{P}(E \mid F)$
- Multiplication rule: $\mathrm{P}\left(E_{1} \cap \cdots \cap E_{n}\right)=$

$$
\mathbf{P}\left(E_{1}\right) \cdot \mathbf{P}\left(E_{2} \mid E_{1}\right) \cdot \mathbf{P}\left(E_{3} \mid E_{1} \cap E_{2}\right) \cdots \mathbf{P}\left(E_{n} \mid E_{1} \cap \cdots \cap E_{n-1}\right)
$$

Random variables

- Independence: what information changes probability
- Mutual independence: $\mathbf{P}(E \cap F)=\mathbf{P}(E) \cdot \mathbf{P}(F)$
- Random variables: when variables depend on chance
- Probability mass function (pmf)
- Cumulative distribution function (cdf)
- Expectation: most likely outcomes of experiment
- Linear: $\mathbf{E}(a X+b)=a \mathbf{E}(X)+b$
- How to compute: $\mathbf{E}(X)=\sum_{i} X(i) \mathbf{P}(i)$
- Variance: how much the experiment can deviate
- How to compute: $\operatorname{Var}(X)=E X^{2}-(E X)^{2}$
- Not linear: $\operatorname{Var}(a X+b)=a^{2} \cdot \operatorname{Var}(X)$
- Standard deviation $\operatorname{SD}(X)=\sqrt{\operatorname{Var} X}$

Standard distributions

- Bernoulli distribution: single trial
- Parameter p
- Binomial distribution: many independent trials
- $\mathbf{P}(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}$
- Expectation $n p$, variance $n p(1-p)$
- Poisson distribution: counting independent trials
- Approximate binomial
- Parameter λ
- $\mathbf{P}(X=i)=e^{-\lambda} \lambda^{i} / i!$
- Expectation and variance λ
- Geometric distribution: first success in independent trials
- $\mathbf{P}(X=i)=(1-p)^{i-1} p$
- Expectation $1 / p$, variance $(1-p) / p^{2}$
- Memoryless

Old exam question

Old exam question

Ask me anything!

