1. (a) For \(n \in \mathbb{Z}^+ \) prove by contradiction the statement ‘if \(5n + 4 \) is even, then \(n \) is even’.

 [marks 3]

 (b) Prove that the simultaneous equations

 \[
 \begin{align*}
 ax + by &= e \\
 cx + dy &= f
 \end{align*}
 \]

 have rational solutions \(x, y \) when \(a, b, c, d, e, f \) are all non-zero integers and \(ad \neq bc \).

 [marks 5]

2. Use the principle of strong induction to show that if \(u_n \) is defined recursively as

 \[
 u_1 = 3, \quad u_2 = 5, \quad u_k = 3u_{k-1} - 2u_{k-2} \quad \text{for} \quad k \in \mathbb{Z}^+, k \geq 3,
 \]

 then the sequence can be represented by \(u_n = 2^n + 1 \) for every integer \(n \geq 1 \).

 [marks 7]

3. We define the symmetric difference of two sets \(A \) and \(B \) as the set

 \[
 A \Delta B = \{x : (x \in A \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \notin A)\}.
 \]

 (a) Write the symmetric difference in set notation using \(- \) and \(\cup \).

 [marks 1]

 (b) Draw a Venn diagram illustrating \(A \Delta B \)

 [marks 1]

 (c) Use the algebraic method to prove

 \[
 A \Delta A \Delta A = A.
 \]
4. (a) Each of the following describes a function where each function has domain and codomain equal to \mathbb{Z}. In each case show whether or not the function is one-to-one (injective) or onto (surjective). Also comment on any that are bijective (one-to-one correspondence).

i. $f(n) = 2n + 1$

ii. $g(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ is even} \\
2n & \text{if } n \text{ is odd}
\end{cases}$

iii. $h(n) = \begin{cases}
n + 1 & \text{if } n \text{ is even} \\
n - 1 & \text{if } n \text{ is odd}
\end{cases}$

(b) Show that the set of all nonnegative integers is countable by showing a bijection between \mathbb{Z}^+ and $\mathbb{Z}_{\text{nonneg}}$ using an explicit function.