DMP Class Test

Discrete Mathematics

October 26th 2022

1. (a) For $n \in \mathbb{Z}^{+}$prove by contradiction the statement 'if $5 n+4$ is even, then n is even'.
(b) Prove that the simultaneous equations

$$
\begin{aligned}
a x+b y & =e \\
c x+d y & =f
\end{aligned}
$$

have rational solutions x, y when a, b, c, d, e, f are all non-zero integers and $a d \neq b c$.
[marks 5]
2. Use the principle of strong induction to show that if u_{n} is defined recursively as

$$
u_{1}=3, \quad u_{2}=5, \quad u_{k}=3 u_{k-1}-2 u_{k-2} \quad \text { for } k \in \mathbb{Z}^{+}, k \geq 3,
$$

then the sequence can be represented by $u_{n}=2^{n}+1$ for every integer $n \geq 1$.
3. We define the symmetric difference of two sets A and B as the set

$$
A \Delta B=x:(x \in A \text { and } x \notin B) \text { or }(x \in B \text { and } x \notin A) .
$$

(a) Write the symmetric difference in set notation using - and \cup.
(b) Draw a Venn diagram illustrating $A \Delta B$
(c) Use the algebraic method to prove

$$
A \Delta A \Delta A=A .
$$

4. (a) Each of the following following describes a function where each function has domain and codomain equal to \mathbb{Z}. In each case show whether or not the function is one-to-one (injective) or onto (surjective). Also comment on any that are bijective (one-to-one correspondence).
i. $f(n)=2 n+1$
ii. $g(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ 2 n & \text { if } n \text { is odd }\end{cases}$
iii. $h(n)= \begin{cases}n+1 & \text { if } n \text { is even } \\ n-1 & \text { if } n \text { is odd }\end{cases}$
(b) Show that the set of all nonnegative integers is countable by showing a bijection between \mathbb{Z}^{+}and $\mathbb{Z}^{\text {nonneg }}$ using an explicit function.
