DMP Class Test

Discrete Mathematics

October 26th 2022

1	()	r - 77+	1	1	.1	·· C F	4 .	.1	,
Ι.	(a)	For $n \in \mathbb{Z}$	prove by	contradiction	the statement	11 $5n +$	4 is even,	then n is	even.

[marks 3]

(b) Prove that the simultaneous equations

$$ax + by = e$$

$$cx + dy = f$$

have rational solutions x, y when a, b, c, d, e, f are all non-zero integers and $ad \neq bc$.

[marks 5]

2. Use the principle of strong induction to show that if u_n is defined recursively as

$$u_1 = 3, \qquad u_2 = 5, \qquad u_k = 3u_{k-1} - 2u_{k-2} \quad \text{for } k \in \mathbb{Z}^+, k \ge 3 \; ,$$

then the sequence can be represented by $u_n = 2^n + 1$ for every integer $n \ge 1$.

[marks 7]

3. We define the symmetric difference of two sets A and B as the set

$$A \Delta B = x : (x \in A \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \notin A)$$
.

(a) Write the symmetric difference in set notation using - and \cup .

[marks 1]

(b) Draw a Venn diagram illustrating $A \Delta B$

[marks 1]

(c) Use the algebraic method to prove

$$A \Delta A \Delta A = A$$
.

4. (a) Each of the following following describes a function where each function has domain and codomain equal to \mathbb{Z} . In each case show whether or not the function is one-to-one (injective) or onto (surjective). Also comment on any that are bijective (one-to-one correspondence).

i.
$$f(n) = 2n + 1$$

ii.
$$g(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ 2n & \text{if } n \text{ is odd} \end{cases}$$
iii. $h(n) = \begin{cases} n+1 & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd} \end{cases}$

[marks 5]

(b) Show that the set of all nonnegative integers is countable by showing a bijection between \mathbb{Z}^+ and \mathbb{Z}^{nonneg} using an explicit function.

[marks 3]