DMP Class Test

Discrete Mathematics

October 26th 2022

1. (a) For $n \in \mathbb{Z}^+$ prove by contradiction the statement 'if 5n + 4 is even, then n is even'.

[marks 3]

Solution:

Proof by Contradiction We assume that 5n + 4 is even and on the contrary n is odd. Let the odd number n = 2k + 1 where k is some non-negative integer. Then

$$5n + 4 = 5(2k + 1) + 4$$

= 10k + 9
= 2(5k + 4) + 1.

Since m = 5k + 4 is an integer as the sums and products of integers are integers, 2m + 1 is an odd integer by definition.

Hence 5n + 4 is odd and this is a contradiction to the original statement that 5n + 4 is even. Thus the original statement is true.

(b) Prove that the simultaneous equations

$$ax + by = e$$
$$cx + dy = f$$

have rational solutions x, y when a, b, c, d, e, f are all non-zero integers and $ad \neq bc$.

[marks 5]

Solution:

Solving gives (ad - bc)x = de - bf and (ad - bc)y = af - ce. Thus

$$x = \frac{de - bf}{ad - bc},$$
$$y = \frac{af - ce}{ad - bc}.$$

We are given $ad - bc \in \mathbb{Z}^{nonzero}$ and since integers are closed by multiplication and subtraction (Epp p161) then both de - bf and af - ce are also integers. By the definition of rationals (Epp, p183) $x, y \in \mathbb{Q}$. \Box

2. Use the principle of strong induction to show that if u_n is defined recursively as

$$u_1 = 3,$$
 $u_2 = 5,$ $u_k = 3u_{k-1} - 2u_{k-2}$ for $k \in \mathbb{Z}^+, k \ge 3$,

then the sequence can be represented by $u_n = 2^n + 1$ for every integer $n \ge 1$.

[marks 7]

Solution:

Let u_1, u_2, \ldots be the sequence defined by specifying that $u_1 = 3, u_2 = 5$ and $u_k = 3u_{k-1} - 2u_{n-2}$ for $k \in \mathbb{Z}^+, k \ge 3$. Let $P(n) : u_n = 2^n + 1$. We will prove that P(n) is true for every integer $n \ge 1$.

Then $P(1): u_1 = 2^1 + 1 = 3$ and $P(2): u_2 = 2^2 + 1 = 5$ which agree with the initial values of the sequence.

We will show that for every integer $k \ge 2$, if P(i) is true for each integer from 1 through k, then P(k+1) is also true.

Let k be any integer with $k \ge 2$ and suppose that

IH : $u_i = 2^i + 1$ for each integer *i* with $1 \le i \le k$.

We must show that

$$P(k+1): u_{k+1} = 2^{k+1} + 1$$

Since $k \ge 2$, we have $k + 1 \ge 3$ and $k - 1 \ge 1$ which is all in the range of *i*. So

IS:
$$u_{k+1} = 3u_k - 2u_{k-1}$$

= $3(2^k + 1) - 2(2^{k-1} + 1)$ using IH twice
= $2 \cdot 2^k + 2^k + 3 - 2 \cdot 2^{k-1} - 2$. using laws of exponents
= $2^{k+1} + 2^k + 3 - 2^k - 2$
= $2^{k+1} + 1$. as was to be shown.

Since we have proved both the basis and the inductive step, by PSMI then P(n) is true.

3. We define the symmetric difference of two sets A and B as the set

$$A \Delta B = x : (x \in A \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \notin A).$$

(a) Write the symmetric difference in set notation using - and \cup .

[marks 1]

(b) Draw a Venn diagram illustrating $A \Delta B$

[marks 1]

(c) Use the algebraic method to prove

$$A \Delta A \Delta A = A .$$

[marks 5]

Solution:

(c) Starting with $A \Delta A$ we see

 $A \Delta A = (A - A) \cup (A - A)$ (by definition) = A - A (Idempotent law) = $A \cap A^c$ (by definition of -) = \emptyset . (Complement law)

Then

$$(A \Delta A) \Delta A = \emptyset \Delta A \qquad \text{(by previous result)}$$
$$= (\emptyset - A) \cap (A - \emptyset). \qquad \text{(by definition of } \Delta)$$
$$= (\emptyset \cap A^c) \cup (A \cap \emptyset^c) \qquad \text{(by definition of } -)$$
$$= \emptyset \cup A \qquad \text{(Complement, commutative and identity laws)}$$
$$= A. \qquad \text{(Identity law)}$$

4. (a) Each of the following following describes a function where each function has domain and codomain equal to Z. In each case show whether or not the function is one-to-one (injective) or onto (surjective). Also comment on any that are bijective (one-to-one correspondence).

i.
$$f(n) = 2n + 1$$

Solution:
Let a_1, a_2 be any two integers in the domain. Then if $f(a_1) = f(a_2)$, $2a_1 + 1 = 2a_2 + 1 \iff a_1 = a_2$. Therefore, f is a one-to-one function.
The range of f consists of only odd integers so f is not onto.

ii.
$$g(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ 2n & \text{if } n \text{ is odd} \end{cases}$$

Solution:

The function g is not injective since, for example, g(4) = 2 and g(1) = 2. Since g(2m) = m for any integer m, g is an onto function.

iii.
$$h(n) = \begin{cases} n+1 & \text{if } n \text{ is even} \\ n-1 & \text{if } n \text{ is odd} \end{cases}$$

Solution:

Note that h(n) is an odd integer when n is even and even integer when n is odd. Hence, if $h(a_1) = h(a_2)$ then either $a_1 + 1 = a_2 + 1$ or $a_1 - 1 = a_2 - 1$ and in both cases $a_1 = a_2$. Therefore, h is one-to-one.

If m is an odd integer, the integer m - 1 is even and so h(m - 1) = (m - 1) + 1 = m. If m is an even integer, the integer m + 1 is odd and so h(m + 1) = (m + 1) - 1 = mTherefore, the range of h is the whole set of integers and so h is surjective. Since h is both one-to-one and onto, h is bijective.

[marks 5]

(b) Show that the set of all nonnegative integers is countable by showing a bijection between \mathbb{Z}^+ and \mathbb{Z}^{nonneg} using an explicit function.

[marks 3]

Solution:

We define a function $f : \mathbb{Z}^+ \to \mathbb{Z}^{nonneg}$ as f(n) = n - 1, $\forall n \in Z^+$. If $n \ge 1$ then $n - 1 \ge 0$ so f is well defined. Also, f is one-to-one because for all positive integers n_1 and n_2 , if $f(n_1) = f(n_2)$ then $n_1 - 1 = n_2 - 1$ so $n_1 = n_2$.

Additionally f is onto because if $m \in \mathbb{Z}^{nonneg}$ then with n - 1 = m giving n = m + 1, then we see that f(m + 1) = (m + 1) - 1 = m by definition of f. Thus, because there is a function $f : \mathbb{Z}^+ \to \mathbb{Z}^{nonneg}$ that is both one-to-one and unto (bijective) then \mathbb{Z}^+ has the same cardinality as \mathbb{Z}^{nonneg} .

It follows that \mathbb{Z}^{nonneg} is countably infinite and hence countable. (Epp p473, 476)