1. (a) For \(n \in \mathbb{Z}^+ \) prove by contradiction the statement ‘if \(5n + 4 \) is even, then \(n \) is even’.

Solution:
Proof by Contradiction
We assume that \(5n + 4 \) is even and on the contrary \(n \) is odd.
Let the odd number \(n = 2k + 1 \) where \(k \) is some non-negative integer. Then
\[
5n + 4 = 5(2k + 1) + 4 = 10k + 9 = 2(5k + 4) + 1.
\]
Since \(m = 5k + 4 \) is an integer as the sums and products of integers are integers, \(2m + 1 \) is an odd integer by definition.
Hence \(5n + 4 \) is odd and this is a contradiction to the original statement that \(5n + 4 \) is even. Thus the original statement is true.

(b) Prove that the simultaneous equations

\[
ax + by = e\\
\]
\[
\]
\[
ax + dy = f
\]

have rational solutions \(x, y \) when \(a, b, c, d, e, f \) are all non-zero integers and \(ad \neq bc \).

Solution:
Solving gives \((ad - bc)x = de - bf \) and \((ad - bc)y = af - ce \).
Thus
\[
x = \frac{de - bf}{ad - bc},\\
y = \frac{af - ce}{ad - bc}.
\]
We are given \(ad - bc \in \mathbb{Z}^{nonzero}\) and since integers are closed by multiplication and subtraction (Epp p161) then both \(de - bf\) and \(af - ce\) are also integers.

By the definition of rationals (Epp, p183) \(x, y \in \mathbb{Q}\). □

2. Use the principle of strong induction to show that if \(u_n\) is defined recursively as

\[u_1 = 3, \quad u_2 = 5, \quad u_k = 3u_{k-1} - 2u_{k-2} \quad \text{for} \quad k \in \mathbb{Z}^+, k \geq 3, \]

then the sequence can be represented by \(u_n = 2^n + 1\) for every integer \(n \geq 1\).

[marks 7]

Solution:

Let \(u_1, u_2, \ldots\) be the sequence defined by specifying that \(u_1 = 3, u_2 = 5\) and \(u_k = 3u_{k-1} - 2u_{k-2}\) for \(k \in \mathbb{Z}^+, k \geq 3\). Let \(P(n) : u_n = 2^n + 1\). We will prove that \(P(n)\) is true for every integer \(n \geq 1\).

Then \(P(1) : u_1 = 2^1 + 1 = 3\) and \(P(2) : u_2 = 2^2 + 1 = 5\) which agree with the initial values of the sequence.

We will show that for every integer \(k \geq 2\), if \(P(i)\) is true for each integer from 1 through \(k\), then \(P(k+1)\) is also true.

Let \(k\) be any integer with \(k \geq 2\) and suppose that

\[\text{IH} : u_i = 2^i + 1 \quad \text{for each integer} \quad i \quad \text{with} \quad 1 \leq i \leq k. \]

We must show that

\[P(k+1) : u_{k+1} = 2^{k+1} + 1. \]

Since \(k \geq 2\), we have \(k + 1 \geq 3\) and \(k - 1 \geq 1\) which is all in the range of \(i\). So

\[\text{IS:} \quad u_{k+1} = 3u_k - 2u_{k-1} \]

\[= 3(2^k + 1) - 2(2^{k-1} + 1) \quad \text{using IH twice} \]

\[= 2 \cdot 2^k + 2^k + 3 - 2 \cdot 2^{k-1} - 2 \quad \text{using laws of exponents} \]

\[= 2^{k+1} + 2^k + 3 - 2^k - 2 \]

\[= 2^{k+1} + 1. \quad \text{as was to be shown.} \]

Since we have proved both the basis and the inductive step, by PSMI then \(P(n)\) is true. □

3. We define the symmetric difference of two sets \(A\) and \(B\) as the set

\[A \Delta B = x : (x \in A \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \notin A). \]

(a) Write the symmetric difference in set notation using \(-\) and \(\cup\).

[marks 1]

(b) Draw a Venn diagram illustrating \(A \Delta B\)

[marks 1]
(c) Use the algebraic method to prove

\[A \Delta A \Delta A = A. \]

[marks 5]

Solution:

(a) \((A - B) \cup (B - A)\)

(b)

(c) Starting with \(A \Delta A\) we see

\[
A \Delta A = (A - A) \cup (A - A) \quad \text{(by definition)}
\]

\[= A - A \quad \text{(Idempotent law)}
\]

\[= A \cap A^c \quad \text{(by definition of \(-\))}
\]

\[= \emptyset. \quad \text{(Complement law)}
\]

Then

\[(A \Delta A) \Delta A = \emptyset \Delta A \quad \text{(by previous result)}
\]

\[= (\emptyset - A) \cap (A - \emptyset). \quad \text{(by definition of \(\Delta\))}
\]

\[= (\emptyset \cap A^c) \cup (A \cap \emptyset^c) \quad \text{(by definition of \(-\))}
\]

\[= \emptyset \cup A \quad \text{(Complement, commutative and identity laws)}
\]

\[= A. \quad \text{(Identity law)}
\]

4. (a) Each of the following following describes a function where each function has domain and codomain equal to \(\mathbb{Z}\). In each case show whether or not the function is one-to-one (injective) or onto (surjective). Also comment on any that are bijective (one-to-one correspondence).

i. \(f(n) = 2n + 1\)

Solution:

Let \(a_1, a_2\) be any two integers in the domain. Then if \(f(a_1) = f(a_2), 2a_1 + 1 = 2a_2 + 1 \iff a_1 = a_2\). Therefore, \(f\) is a one-to-one function.

The range of \(f\) consists of only odd integers so \(f\) is not onto.
ii. \(g(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ 2n & \text{if } n \text{ is odd} \end{cases} \)

Solution:
The function \(g \) is not injective since, for example, \(g(4) = 2 \) and \(g(1) = 2 \).
Since \(g(2m) = m \) for any integer \(m \), \(g \) is an onto function. \(\square \)

iii. \(h(n) = \begin{cases} n + 1 & \text{if } n \text{ is even} \\ n - 1 & \text{if } n \text{ is odd} \end{cases} \)

Solution:
Note that \(h(n) \) is an odd integer when \(n \) is even and even integer when \(n \) is odd.
Hence, if \(h(a_1) = h(a_2) \) then either \(a_1 + 1 = a_2 + 1 \) or \(a_1 - 1 = a_2 - 1 \) and in both cases \(a_1 = a_2 \). Therefore, \(h \) is one-to-one.
If \(m \) is an odd integer, the integer \(m - 1 \) is even and so \(h(m - 1) = (m - 1) + 1 = m \).
If \(m \) is an even integer, the integer \(m + 1 \) is odd and so \(h(m + 1) = (m + 1) - 1 = m \).
Therefore, the range of \(h \) is the whole set of integers and so \(h \) is surjective. Since \(h \) is both one-to-one and onto, \(h \) is bijective. \(\square \)

[marks 5]

(b) Show that the set of all nonnegative integers is countable by showing a bijection between \(\mathbb{Z}^+ \) and \(\mathbb{Z}_{nonneg} \) using an explicit function.

[marks 3]

Solution:
We define a function \(f : \mathbb{Z}^+ \to \mathbb{Z}_{nonneg} \) as \(f(n) = n - 1, \) \(\forall n \in \mathbb{Z}^+ \).
If \(n \geq 1 \) then \(n - 1 \geq 0 \) so \(f \) is well defined.
Also, \(f \) is one-to-one because for all positive integers \(n_1 \) and \(n_2 \), if \(f(n_1) = f(n_2) \) then \(n_1 - 1 = n_2 - 1 \) so \(n_1 = n_2 \).
Additionally \(f \) is onto because if \(m \in \mathbb{Z}_{nonneg} \) then with \(n - 1 = m \) giving \(n = m + 1 \), then we see that \(f(m + 1) = (m + 1) - 1 = m \) by definition of \(f \). Thus, because there is a function \(f : \mathbb{Z}^+ \to \mathbb{Z}_{nonneg} \) that is both one-to-one and onto (bijective) then \(\mathbb{Z}^+ \) has the same cardinality as \(\mathbb{Z}_{nonneg} \).
It follows that \(\mathbb{Z}_{nonneg} \) is countably infinite and hence countable. (Epp p473, 476) \(\square \)