DMP Class Test

Discrete Mathematics

October 26th 2022

1. (a) For $n \in \mathbb{Z}^{+}$prove by contradiction the statement 'if $5 n+4$ is even, then n is even'.

Solution:

Proof by Contradiction
We assume that $5 n+4$ is even and on the contrary n is odd.
Let the odd number $n=2 k+1$ where k is some non-negative integer. Then

$$
\begin{aligned}
5 n+4 & =5(2 k+1)+4 \\
& =10 k+9 \\
& =2(5 k+4)+1 .
\end{aligned}
$$

Since $m=5 k+4$ is an integer as the sums and products of integers are integers, $2 m+1$ is an odd integer by definition.
Hence $5 n+4$ is odd and this is a contradiction to the original statement that $5 n+4$ is even. Thus the original statement is true.
(b) Prove that the simultaneous equations

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

have rational solutions x, y when a, b, c, d, e, f are all non-zero integers and $a d \neq b c$.
[marks 5]

Solution:

Solving gives $(a d-b c) x=d e-b f$ and $(a d-b c) y=a f-c e$.
Thus

$$
\begin{aligned}
& x=\frac{d e-b f}{a d-b c}, \\
& y=\frac{a f-c e}{a d-b c} .
\end{aligned}
$$

We are given $a d-b c \in \mathbb{Z}^{\text {nonzero }}$ and since integers are closed by multiplication and subtraction (Epp p161) then both $d e-b f$ and $a f-c e$ are also integers.
By the definition of rationals (Epp, p183) $x, y \in \mathbb{Q}$.
2. Use the principle of strong induction to show that if u_{n} is defined recursively as

$$
u_{1}=3, \quad u_{2}=5, \quad u_{k}=3 u_{k-1}-2 u_{k-2} \quad \text { for } k \in \mathbb{Z}^{+}, k \geq 3,
$$

then the sequence can be represented by $u_{n}=2^{n}+1$ for every integer $n \geq 1$.

Solution:

Let u_{1}, u_{2}, \ldots be the sequence defined by specifying that $u_{1}=3, u_{2}=5$ and $u_{k}=3 u_{k-1}-$ $2 u_{n-2}$ for $k \in \mathbb{Z}^{+}, k \geq 3$. Let $P(n): u_{n}=2^{n}+1$. We will prove that $P(n)$ is true for every integer $n \geq 1$.
Then $P(1): u_{1}=2^{1}+1=3$ and $P(2): u_{2}=2^{2}+1=5$ which agree with the initial values of the sequence.
We will show that for every integer $k \geq 2$, if $P(i)$ is true for each integer from 1 through k, then $P(k+1)$ is also true.
Let k be any integer with $k \geq 2$ and suppose that

$$
\text { IH : } u_{i}=2^{i}+1 \quad \text { for each integer } i \text { with } 1 \leq i \leq k .
$$

We must show that

$$
P(k+1): u_{k+1}=2^{k+1}+1 .
$$

Since $k \geq 2$, we have $k+1 \geq 3$ and $k-1 \geq 1$ which is all in the range of i. So

$$
\text { IS: } \quad \begin{aligned}
u_{k+1} & =3 u_{k}-2 u_{k-1} \\
& =3\left(2^{k}+1\right)-2\left(2^{k-1}+1\right) \quad \text { using IH twice } \\
& =2 \cdot 2^{k}+2^{k}+3-2 \cdot 2^{k-1}-2 . \quad \text { using laws of exponents } \\
& =2^{k+1}+2^{k}+3-2^{k}-2 \\
& =2^{k+1}+1 . \quad \text { as was to be shown. }
\end{aligned}
$$

Since we have proved both the basis and the inductive step, by PSMI then $P(n)$ is true.
3. We define the symmetric difference of two sets A and B as the set

$$
A \Delta B=x:(x \in A \text { and } x \notin B) \text { or }(x \in B \text { and } x \notin A) .
$$

(a) Write the symmetric difference in set notation using - and \cup.
(b) Draw a Venn diagram illustrating $A \Delta B$
(c) Use the algebraic method to prove

$$
A \Delta A \Delta A=A
$$

Solution:

(a) $(A-B) \cup(B-A)$

(b)
(c) Starting with $A \Delta A$ we see

$$
\begin{array}{rlrl}
A \Delta A & =(A-A) \cup(A-A) \quad \text { (by definition) } \\
& =A-A & & \text { (Idempotent law) } \\
& =A \cap A^{c} & \quad(\text { by definition of }-) \\
& =\emptyset . & & (\text { Complement law) }
\end{array}
$$

Then

$$
\begin{aligned}
(A \Delta A) \Delta A & =\emptyset \Delta A \quad \text { (by previous result) } \\
& =(\emptyset-A) \cap(A-\varnothing) . \quad \text { (by definition of } \Delta) \\
& \left.=\left(\emptyset \cap A^{c}\right) \cup\left(A \cap \emptyset^{c}\right) \quad \text { (by definition of }-\right) \\
& =\emptyset \cup A \quad \text { (Complement, commutative and identity laws) } \\
& =A . \quad \text { (Identity law) }
\end{aligned}
$$

4. (a) Each of the following following describes a function where each function has domain and codomain equal to \mathbb{Z}. In each case show whether or not the function is one-to-one (injective) or onto (surjective). Also comment on any that are bijective (one-to-one correspondence).
i. $f(n)=2 n+1$

Solution:

Let a_{1}, a_{2} be any two integers in the domain. Then if $f\left(a_{1}\right)=f\left(a_{2}\right), 2 a_{1}+1=$ $2 a_{2}+1 \Longleftrightarrow a_{1}=a_{2}$. Therefore, f is a one-to-one function. The range of f consists of only odd integers so f is not onto.
ii. $g(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ 2 n & \text { if } n \text { is odd }\end{cases}$

Solution:

The function g is not injective since, for example, $g(4)=2$ and $g(1)=2$.
Since $g(2 m)=m$ for any integer m, g is an onto function.
iii. $h(n)= \begin{cases}n+1 & \text { if } n \text { is even } \\ n-1 & \text { if } n \text { is odd }\end{cases}$

Solution:

Note that $h(n)$ is an odd integer when n is even and even integer when n is odd.
Hence, if $h\left(a_{1}\right)=h\left(a_{2}\right)$ then either $a_{1}+1=a_{2}+1$ or $a_{1}-1=a_{2}-1$ and in both cases $a_{1}=a_{2}$. Therefore, h is one-to-one.
If m is an odd integer, the integer $m-1$ is even and so $h(m-1)=(m-1)+1=m$. If m is an even integer, the integer $m+1$ is odd and so $h(m+1)=(m+1)-1=m$ Therefore, the range of h is the whole set of integers and so h is surjective. Since h is both one-to-one and onto, h is bijective.
(b) Show that the set of all nonnegative integers is countable by showing a bijection between \mathbb{Z}^{+}and $\mathbb{Z}^{\text {nonneg }}$ using an explicit function.

Solution:

We define a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{\text {nonneg }}$ as $f(n)=n-1, \quad \forall n \in Z^{+}$.
If $n \geq 1$ then $n-1 \geq 0$ so f is well defined.
Also, f is one-to-one because for all positive integers n_{1} and n_{2}, if $f\left(n_{1}\right)=f\left(n_{2}\right)$ then $n_{1}-1=n_{2}-1$ so $n_{1}=n_{2}$.
Additionally f is onto because if $m \in \mathbb{Z}^{\text {nonneg }}$ then with $n-1=m$ giving $n=m+1$, then we see that $f(m+1)=(m+1)-1=m$ by definition of f. Thus, because there is a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{\text {nonneg }}$ that is both one-to-one and unto (bijective) then \mathbb{Z}^{+}has the same cardinality as $\mathbb{Z}^{\text {nonneg }}$.
It follows that $\mathbb{Z}^{\text {nonneg }}$ is countably infinite and hence countable. (Epp p473, 476)

