DMP Class Test

Solutions

25 October 2023

1. We prove this by contradiction.

Suppose that there exist different positive integers x and y such that $x / y^{2}=x^{2} / y$. Multiplying both sides by y^{2}, and dividing by x, using that $x \neq 0$, gives $1=x y$. Using that x and y are positive integers, the only way one can have $x y=1$ is when $x=1$ and $y=1$. But then $x=y$, contradicting the assumption that x and y are different.
Thus the assumption must have been false, and there are no different positive integers x and y such that $x / y^{2}=x^{2} / y$.
2. We prove the even stronger statement that $s_{n}=2^{n-1}$, for all $n \geq 1$. The proof is by induction. Let $P(n)$ be the statement " $s_{n}=2^{n-1 "}$.
Base case: $s_{1}=\sum_{i<1} s_{i}=s_{0}=1=2^{0}$. So $P(1)$ holds.
Induction step: Assuming $P(k)$ for some $k \geq 1$, we must obtain $P(k+1)$. So we assume that $s_{k}=2^{k-1}$. Now $s_{k+1}=\sum_{i<k+1} s_{i}=\sum_{i<k} s_{i}+s_{k}=s_{k}+s_{k}=2^{k-1}+2^{k-1}=2 \cdot 2^{k-1}=2^{k}$. This is $P(k+1)$.
Thus, by induction, $s_{n}=2^{n-1}$ for all $n \geq 1$ and in particular for all $n \geq 3$.
3. To prove that $A-(B-C)=(C \cap A) \cup(A-B)$ by the element method, first suppose that $x \in$ $A-(B-C)$. Then $x \in A$ and $\notin B-C$. The latter implies that either $x \notin B$ or $x \in C$. In the first case we get $x \in A-B$, which implies $x \in(C \cap A) \cup(A-B)$. In the second case we get $x \in C \cap A$, which also implies $x \in(C \cap A) \cup(A-B)$. Thus, in either case $x \in(C \cap A) \cup(A-B)$. It follows that $A-(B-C) \subseteq(C \cap A) \cup(A-B)$
Next suppose that $x \in(C \cap A) \cup(A-B)$. Then either $x \in C \cap A$ or $x \in A-B$. In the first case $x \in C$ and $x \in A$. Thus $x \notin B-C$, and hence $x \in A-(B-C)$. In the second case $x \in A$ and $x \notin B$. Thus $x \notin B-C$, and hence $x \in A-(B-C)$. So in either case $x \in A-(B-C)$. It follows that $(C \cap A) \cup(A-B) \subseteq A-(B-C)$.

Together, we obtain $A-(B-C)=(C \cap A) \cup(A-B)$.
Here is an algebraic proof of the same identity:

$$
\begin{aligned}
A-(B-C) & =(\text { Law 12) } \\
A-\left(B \cap C^{c}\right) & =\text { (Law 12) } \\
A \cap\left(B \cap C^{c}\right)^{c} & =\text { (Law 9(b)) } \\
A \cap\left(B^{c} \cup\left(C^{c}\right)^{c}\right) & =\text { (Law 6) } \\
A \cap\left(B^{c} \cup C\right) & =\text { (Law 3(b)) } \\
\left(A \cap B^{c}\right) \cup(A \cap C) & =\text { (Law 3(b)) } \\
(A \cap C) \cup\left(A \cap B^{c}\right) & =\text { (Law 1(a)) } \\
(C \cap A) \cup\left(A \cap B^{c}\right) & =\text { (Law 1(b)) } \\
(C \cap A) \cup(A-B) & =\text { (Law 12) }
\end{aligned}
$$

4. The function f is not injective, since $f(1)=f(-1)=1$. It moreover is not surjective, since there is no x with $f(x)=-1$. Thus, is is not bijective either.
To test whether g is surjective, we try to solve the equation $g(x)=y$. We obtain $\frac{3 x}{x-1}=y$, so $x y-y=3 x$ and $x(y-3)=y$. Hence $x=\frac{y}{y-3}$. There is no solution for the case $y=3$. In fact, if $x>1$ then $g(x)>3$ and if $x<1$ then $g(x)<3$. Hence g is not surjective. Thus, is is not bijective either.
The above derivation does show that g is injective, because for any given $y \neq 3$ the only x with $g(x)=y$ is $x=\frac{y}{y-3}$.
Since $h(x)=g(x) \neq 3$ for any $x \neq 1$, and g is injective, h is also injective. Moreover, h repairs the only point in which g fails to be surjective. Hence h is surjective, and thus also bijective.
5. It suffice provide an injective mapping from the words to the natural numbers. Such a mapping is obtained by seeing each word as a number is base 27, where the letters $a-z$ are the non-zero digits. Such a map is clearly injective.
Using base 26 and all digits is not quite right, because if a is the 0 -digit, then $a a b$ maps to 001 , which is the same number 01 obtained by $a b$, so we lose injectivity.
