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1. We prove this by contradiction.

Suppose that there exist different positive integers x and y such that x/y> = x? /y. Multiplying both
sides by y?, and dividing by x, using that x # 0, gives 1 = xy. Using that x and y are positive
integers, the only way one can have xy = 1 is when x = 1 and y = 1. But then x =y, contradicting
the assumption that x and y are different.

Thus the assumption must have been false, and there are no different positive integers x and y such
that x/y? = x? /.

2. We prove the even stronger statement that s, = 2"~!, for all n > 1. The proof is by induction. Let
P(n) be the statement “s, = 2",
Base case: s; = Y, s; = so = 1 =2 So P(1) holds.
Induction step: Assuming P(k) for some k > 1, we must obtain P(k+1). So we assume that
sp =251 Now spi1 = Yok 8i = Yk Si + 5k = sp +sp = 2871 42821 = 2. 0k=1 = 2k This is
P(k+1).
Thus, by induction, s, = 21 foralln> 1 and in particular for all n > 3.

3. To prove that A— (B—C) = (CNA)U (A — B) by the element method, first suppose that x €

A—(B—C). Then x € A and ¢ B—C. The latter implies that either x ¢ B or x € C. In the first
case we get x € A — B, which implies x € (CNA)U (A — B). In the second case we get x € CNA,
which also implies x € (CNA)U (A — B). Thus, in either case x € (CNA)U (A — B). It follows that
A—(B—C)C (CNA)U(A—B)
Next suppose that x € (CNA)U (A — B). Then either x € CNA or x € A— B. In the first case
x€Candx € A. Thus x ¢ B—C, and hence x € A — (B—C). In the second case x € A and x ¢ B.
Thus x ¢ B—C, and hence x € A — (B—C). So in either case x € A — (B—C). It follows that
(CNA)U(A—B) CA—(B—C).

Together, we obtain A — (B—C) = (CNA)U(A—B).

Here is an algebraic proof of the same identity:

—(B—C) = (Law 12)
(BﬂCC) = (Law 12)
Am(BmCC)C = (Law 9(b))
AN(B°U(C) ) = (Law 6)
AN(B°UC) = (Law 3(b))
(ANBYUANC) = (Law 3(b))
(ANC)U(ANB‘) = (Law l(a))
(CNA)U(ANBY) = (Law 1(b))
(CNA)U(A—B) = (Law 12)
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4. The function f is not injective, since f(1) = f(—1) = 1. It moreover is not surjective, since there

is no x with f(x) = —1. Thus, is is not bijective either.
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To test whether g is surjective, we try to solve the equation g(x) =y. We obtain = =y, so

xy—y=3xand x(y —3) =y. Hence x = y_% There is no solution for the case y = 3. In fact, if
x> 1 then g(x) > 3 and if x < 1 then g(x) < 3. Hence g is not surjective. Thus, is is not bijective
either.

The above derivation does show that g is injective, because for any given y # 3 the only x with
glx)=yisx= )%3
Since h(x) = g(x) # 3 for any x # 1, and g is injective, & is also injective. Moreover, A repairs the
only point in which g fails to be surjective. Hence 4 is surjective, and thus also bijective.

5. It suffice provide an injective mapping from the words to the natural numbers. Such a mapping is
obtained by seeing each word as a number is base 27, where the letters a—z are the non-zero digits.
Such a map is clearly injective.

Using base 26 and all digits is not quite right, because if a is the 0-digit, then aab maps to 001,
which is the same number 01 obtained by ab, so we lose injectivity.



