This homework runs from 3pm Thursday 28 September 2023 until 12 noon on Thursday 5 October 2023. Submission is to Gradescope Homework 2.

Question 1

Assume n is a positive integer with $n \geq 1$. Prove by mathematical induction that

$$
\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4} .
$$

Question 2

Suppose a sequence of integers $a_{1}, a_{2}, a_{3}, \ldots$ is defined recursively as follows:

$$
a_{1}=4 \quad \text { and } \quad a_{n+1}=a_{n}+18 n+3 \quad \text { for } n \geq 1 .
$$

Prove by induction that $a_{n}=(3 n-1)^{2}$ for all $n \geq 1$.

Solution 1

Let $P(n)$ be the statement given in the question:

$$
\begin{equation*}
\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4} \tag{n}
\end{equation*}
$$

We wish to prove by induction that $P(n)$ holds for all integers $n \geq 1$.
For the base case $P(1)$ we must show the following.

$$
\begin{equation*}
\sum_{r=1}^{1} r^{3}=\frac{1^{2}(1+1)^{2}}{4} \tag{1}
\end{equation*}
$$

We can expand out both sides.

$$
\sum_{r=1}^{1} r^{3}=1^{3}=1 \quad \frac{1^{2}(1+1)^{2}}{4}=\frac{1 \cdot 2^{2}}{4}=1
$$

Since both sides are equal to the same value they are equal to each other and $P(1)$ holds.
For inductive step we assume that $P(k)$ holds for some value $k \geq 1$ and seek to show $P(k+1)$.

$$
\sum_{r=1}^{k} r^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

We expand out the left-hand side of $P(k+1)$ and calculate.

$$
P(k+1) \text { LHS } \quad \begin{aligned}
\sum_{r=1}^{k+1} r^{3} & =\left(\sum_{r=1}^{k} r^{3}\right)+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \quad \text { by } P(k) \\
& =\frac{1}{4}\left(k^{2}(k+1)^{2}+4(k+1)^{3}\right)=\frac{1}{4}\left(k^{2}+4(k+1)\right)(k+1)^{2} \\
& \left.=\frac{1}{4}\left(k^{2}+4 k+4\right)\right)(k+1)^{2} \quad=\frac{1}{4}(k+2)^{2}(k+1)^{2} \\
& =\frac{(k+1)^{2}((k+1)+1)^{2}}{4} \quad P(k+1) \mathrm{RHS}
\end{aligned}
$$

This shows $P(k+1)$ holds if we know that $P(k)$ does.
From the base and step case we deduce by mathematical induction that $P(n)$ holds for all integers $n \geq 1$.

Solution 2

For the base case $n=1$ we check that $(3 \cdot 1-1)^{2}=2^{2}=4=a_{1}$ as required.
For the step case we assume as induction hypothesis that $a_{k}=(3 k-1)^{2}$ for integer $k \geq 1$ and try to show that $a_{k+1}=(3(k+1)-1)^{2}$. We can start by expanding both sides of this equation.

$$
\begin{aligned}
a_{k+1} & =a_{k}+18 k+3 \quad \text { by definition of sequence } \\
& =(3 k-1)^{2}+18 k+3 \quad \text { by induction hypo } \\
& =\left(9 k^{2}-6 k+1\right)+18 k+3 \\
& =9 k^{2}+12 k+4
\end{aligned}
$$

$$
(3(k+1)-1)^{2}=(3 k+2)^{2}
$$

$$
=(3 k-1)^{2}+18 k+3 \text { by induction hypothesis }
$$

$$
=9 k^{2}+12 k+4
$$

Both sides are equal and we have shown $a_{k+1}=(3(k+1)-1)^{2}$ as required.
From the base and step case we deduce by mathematical induction that $a_{n}=(3 n-1)^{2}$ for all integers $n \geq 1$.

