This homework runs from Thursday 9 November 2023 until 12 noon on Thursday 16 November 2023. Submission is to Gradescope Homework 5.

Question 1

(a) Half of all messages are spam: junk mail that you don't want to read. A spam filter is a piece of software that tries to filter these spam messages before they reach your inbox. Suppose you have a spam filter that correctly detects 95% of spam messages, with only a 1% probability of a false positive - a message being marked as spam when it isn't. If a message is flagged by the filter as spam, what is the probability that it is in fact not spam?
[2 marks]
(b) The probability that a sports fan supports Sportball Team A is 0.4 . Using a binomial distribution find the probability that in a randomly selected sample of 8 fans there are:
(i) exactly 3 who support Team A;
(ii) more than 5 who support Team A.

Question 2

A delivery driver travels K_{1} kilometres on Tuesday, $K_{2} \mathrm{~km}$ on Wednesday, and $K_{3} \mathrm{~km}$ on Thursday. Here K_{1}, K_{2}, and K_{3} are independent random variables each having a normal distribution with mean 90 and standard deviation 25 .
(a) Calculate the probability that on Tuesday the driver travels more than 100 km .
(b) Calculate $P\left(80 \leq K_{2} \leq 100\right)$.
(c) Calculate the probability that the driver travels less than 80 km on every one of the three days.
(d) Random variable $T=K_{1}+K_{2}+K_{3}$ records the total distance in kilometres travelled over the three days.

Calculate the expectation, variance, and standard deviation of T.
(e) Random variable $A=T / 3$ records the average distance in kilometres travelled per day.

Calculate the expectation, variance, and standard deviation of A.
Show your working for each calculation. Look in Appendix A of the course textbook, Carlton and Devore, for Table A. 3 on pages 601 and 602 showing the CDF Φ of the Standardized Normal distribution.

Solution 1

(a) We define events: S is the event that a message is spam; S^{c} is the event that a message is not spam; D is the event that the spam filter flags a message as spam. We are given the following data.

$$
\begin{aligned}
P(S)=P\left(S^{c}\right) & =\frac{1}{2} & \text { Half of all messages are spam; half are not. } \\
P(D \mid S) & =\frac{95}{100} & \text { The filter detects } 95 \% \text { of spam messages. } \\
P\left(D \mid S^{c}\right) & =\frac{1}{100} & \text { The filter marks } 1 \% \text { of non-spam messages as spam. }
\end{aligned}
$$

We can then reason using Bayes to find the probability we want.

$$
\begin{aligned}
P\left(S^{c} \mid D\right)=\frac{P\left(S^{c} \cap D\right)}{P(D)} & =\frac{P\left(D \mid S^{c}\right) P\left(S^{c}\right)}{P(D \mid S) P(S)+P\left(D \mid S^{c}\right) P\left(S^{c}\right)} \\
& =\frac{0.01 \cdot 0.5}{0.95 \cdot 0.5+0.01 \cdot 0.5} \\
& \left.=\frac{1}{96}=0.010 \quad \text { (3 d.p. }\right)
\end{aligned}
$$

For any message marked as spam there is a 1% probability that it is in fact not spam. It is also possible to work this out using a tree diagram labelled with all the relevant probabilities.
(b) To treat this using a binomial distribution we regard "Supporting Team A " as success, giving $p=0.4$ and $q=(1-p)=0.6$. Let X be the random variable "number of Team A supporters in the random sample of 8 fans". We then have $X \sim \operatorname{Bin}(8,0.4)$ and so

$$
P(X=k)=\binom{n}{k} p^{x} q^{n-k}=\binom{8}{k} 0.4^{k} 0.6^{n-k}, \quad k=0,1, \ldots, 8 .
$$

We can then use this formula to calculate the required values.
(i)

$$
P(X=3)=\binom{8}{3}(0.4)^{3}(0.6)^{5}=0.279 \quad \text { (3 d.p.) }
$$

(ii)

$$
\begin{aligned}
P(X>5) & =P(X=6)+P(X=7)+P(X=8) \\
& =\binom{8}{6}(0.4)^{6}(0.6)^{2}+\binom{8}{7}(0.4)^{7}(0.6)^{1}+\binom{8}{8}(0.4)^{8}(0.6)^{0} \\
& =0.050 \quad \text { (3 d.p. })
\end{aligned}
$$

Solution 2

(a) $X \sim \mathrm{~N}(90,25)$ where X is K_{1}, K_{2} or K_{3}.

$$
\begin{equation*}
P\left(K_{1}>100\right)=P\left(Z>\frac{100-90}{25}\right)=P(Z>0.4)=1-\Phi(0.4)=0.345 \tag{3d.p.}
\end{equation*}
$$

(b)

$$
\left.P\left(80 \leq K_{2} \leq 100\right)=\Phi(0.4)-\Phi(-0.4)=0.311 \quad \text { (3d.p. }\right)
$$

(c)

$$
\begin{aligned}
P\left(K_{1}<80 \& K_{2}<80 \& K_{3}<80\right) & =P\left(K_{1}<80\right) \cdot P\left(K_{2}<80\right) \cdot P\left(K_{3}<80\right) \\
& =\Phi(-0.4)^{3}=0.041 \quad(3 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

(d)

$$
\begin{aligned}
\mathrm{E}(T) & =\mathrm{E}\left(K_{1}\right)+\mathrm{E}\left(K_{2}\right)+\mathrm{E}\left(K_{3}\right)=270 \\
\operatorname{Var}(T) & =\operatorname{Var}\left(K_{1}\right)+\operatorname{Var}\left(K_{2}\right)+\operatorname{Var}\left(K_{3}\right)=3 \times 25^{2}=1875 \\
\mathrm{SD}(T) & =\sqrt{\operatorname{Var}(T)}=43.3 \quad(3 \text { s.f. })
\end{aligned}
$$

The first of these relies on linearity of expectations, the second depends on the K_{i} being independent, and the third follows from the definition of standard deviation.
(e)

$$
\begin{aligned}
\mathrm{E}(A) & =\mathrm{E}(T) / 3=90 \\
\operatorname{Var}(A) & =\operatorname{Var}(T) / 3^{2}=208 \quad(3 \text { s.f. }) \\
\mathrm{SD}(T) & =\sqrt{\operatorname{Var}(A)}=14.4 \quad(3 \text { s.f. })
\end{aligned}
$$

All of these follow from rescaling properties for random variables.

