This homework runs from Thursday 16 November 2023 until 12 noon on Thursday 23 November 2023. Submission is to Gradescope Homework 6.

## Question 1

A small commercial passenger aircraft has fuel efficiency that varies under different conditions, such as weather or loading weight. Over time it is observed that in regular use the fuel efficiency $X$, measured in miles per UK gallon (mpg) is distributed with the following PDF and CDF.

$$
\begin{array}{lll}
f_{X}(x)=4\left(x-x^{3}\right) & 0 \leq x \leq 1 & f_{X}(x)=0 \text { otherwise } \\
F_{X}(x)=2 x^{2}-x^{4} & 0 \leq x \leq 1 & F_{X}(x)=0 \text { if } x<0 \text { and } 1 \text { if } x \geq 1
\end{array}
$$

(a) Calculate the expected value of $X$.
(b) Calculate the probability that fuel efficiency is between 0.5 and 0.75 miles per gallon.

Random variable $Y$ is an approximate measure of fuel efficiency using the alternate metric unit of litres of fuel per kilometre.

$$
Y=\frac{2 \sqrt{2}}{X}
$$

(c) Random variable $X$ always takes values between 0 and 1 . What is the range of possible values for $Y$ ?
(d) Calculate $P(Y>5)$.
(e) Calculate the PDF for $Y$.

Include your working for each part.

## Question 2

Two continuous random variables $X$ and $Y$ range between 0 and 1 with the following joint probability distribution.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{4 x}{3}+y^{2} & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Calculate the marginal probability distribution functions $f_{X}(x)$ and $f_{Y}(y)$.
(b) Calculate $f_{X}(1), f_{Y}(1)$, and $f(1,1)$. Use these to show that $X$ and $Y$ are not independent.
(c) Use the following information about $X$ and $Y$ to estimate the expected value and variance of $(X-Y)$ to three decimal places.

$$
\mathrm{E}(X)=0.611 \quad \operatorname{Var}(X)=0.071 \quad \mathrm{E}(Y)=0.583 \quad \operatorname{Var}(Y)=0.082 \quad \operatorname{Cov}(X, Y)=-0.009
$$

Include your working for each part.

