Correction:

There is a lecture next week, namely on Thursday, after the class test has been submitted. It introduces material from Week 7, on discrete probability.
* Week 1 (18 Sept; self study): Epp Chapter 1: Speaking Mathematically
 Variables; Languages of Sets, of Relations and Functions, of Graphs.
 Chapter 2: Logic of compound statements
 2.1 Logical Form and Logical Equivalence
 2.2 Conditional Statements
 Chapter 3: The logic of Quantified Statements: All except 3.4, which was covered in Inf1A.

 Skip Section 4.9 and 4.10 (or 4.8 in the 4th edition)
 Direct proof, proof by cases, by contradiction and by contraposition

* Week 3 (28 Sept & 2 Oct): Chapter 5: Induction and Recursion Skip 5.1 (you know this already), skip 5.7-5.9
 5.1 and 5.6 (self study): recursively defined sequences, sum notation; n! and “n choose r”.
 5.2-5.4: Proof by induction, and by strong induction.

* Week 4 Chapter 6: Set theory (treated already on 2 Oct), without 6.4
 Basic operators on sets; Venn diagrams; proving set inclusion by element method, and by algebraic method.
 Chapter 7: Functions Domain and co-domain; range of a function.
 (5 Oct): Injective, surjective and bijective function. The inverse of a bijective function.
 The set of integers, as well as the rationals, are countable. The reals are uncountable.
 Having the same size is an equivalence relation on sets.
 Having a smaller or equal size (defined with injections) is a relation on sets that is reflexive and
 transitive, and if two sets are smaller or equal in size to each other, they must have the same size.

* Week 5 (12 Oct): Chapter 8: Relations
 (16 Oct): 8.4: Modular arithmetic and cryptography.
Discrete Math: Covered material

* Week 1 (18 Sept; self study): Epp Chapters 1-3:
 Variables; Sets, Relations Functions, Graphs; Logic, Conditional Statements, Quantified Statements.

 Direct proof, proof by cases, by contradiction and by contraposition

* Week 3 (28 Sept & 2 Oct): Chapter 5: Induction and Recursion
 Skip 5.1 (you know this already), skip 5.7-5.9
 5.1 and 5.6 (self study): recursively defined sequences, sum notation; n! and “n choose r”.
 5.2-5.4: Proof by induction, and by strong induction.

* Week 4 Chapter 6: Set theory (treated already on 2 Oct), without 6.4
 Basic operators on sets; Venn diagrams; proving set inclusion by element method, and by algebraic method.
 Chapter 7: Functions
 (5 Oct): Injective, surjective and bijective function. The inverse of a bijective function.
 Domain and co-domain. Range of function.
 Having the same size is an equivalence relation on sets.

* Week 5 (12 Oct): Chapter 8: Relations
 Binary relations; domain and co-domain; 2 kinds of graphs of a relation; inverse of any relation.
 N-ary relations. Reflexivity, symmetry and transitivity of binary relations with domain=co-domain.
 Equivalence relations, equivalence classes, representative of an equivalence class.
 Each equivalence relation induces a partition, and each partition induces an equivalence relation.
 (16 Oct): 8.4: Modular arithmetic and cryptography
 Inverse of a number modulo n. Solving diophantine equations.
 RSA cryptography.