Discrete Mathematics and Probability Week 7

Chris Heunen

Springer Texts in Statistics

Matthew A. Carlton Jay L. Devore

Probability with Applications in Engineering, Science, and Technology

Second Edition

EXTRAS ONLINE

🖉 Springer

Topics

- Counting: thinking algorithmically
- Events: what could happen in principle
- Experiments: how can events interact
- Probability: quantifying what could happen

Counting

Counting

Basic principles of combinatorics:

- if an experiment has *n* outcomes;
 and another experiment has *m* outcomes,
- then the two experiments jointly have $n \cdot m$ outcomes.

Permutations

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of *n* different objects. The *permutations* of *H* are the different orders in which you can write all of its elements.

Permutations with repetitions

Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1, n_2 of $h_2, \dots n_r$ of h_r . The *permutations with repetitions* of H are the different orders in which you can write all of its elements.

k-Permutations

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of *n* different objects. The *k*-permutations of *H* are the different ways in which one can pick and write *k* of its elements of *H* in order.

$$Example: top 3 in here race {1,5, C,0, E}e.g. (E, 0, A)
$$\frac{5!}{(5-3)!} = 20 \quad \text{possibilities}$$$$

k-Permutations with repetitions

Definition

Let $H = \{h_1, \ldots, h_2, \ldots, h_r, \ldots\}$ be a set of *r* different types of repeated objects, each of infinite supply. The *k*-permutations with repetitions of *H* are the different orders in which one can write an ordered sequence of length *k* using the elements of *H*.

Example: It 3-letter words of letters of English alphaset = 26 = 17576 It bit strings of langth k = 24

k-Combinations

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of *n* different objects. The *k*-combinations of *H* are the different ways in which one can pick *k* of its elements without order.

How many?
$$C_{n,k} = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

"binomial coefficient" $C_{n,k} = \frac{P_{n,k}}{k!}$

Example: # ways to form committee of 5 stratets from class of 30 = $\binom{30}{5} = \frac{30!}{5! \perp 5!} = 142506$

Events

Events

A mathematical model for experiments:

- Sample space: the set Ω of all possible outcomes
- An *event* is a collection¹ of possible outcomes: $E \subseteq \Omega$
- Union $E \cup F$ and intersection $E \cap F$ of events make sense

¹Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Examples

amples Expend	Sample space	Event
Will it rain boday?	$\mathcal{Q} = \{r, n\}$	e.g. E= (r)
5-hase race	Dependentions of 54,6,00, El	e.g. E= {B usins} F: {E usins, A third] Notice En F= B - E never hoppens
flip 2 coins	ת = ג(א,או, (א,ד), (ד,ד,ד), (א,ד))	R.g. E= coirs different = f(H,T), (T,H) E. at cast one heads
roll die until get 6	In = (sequences of 1-5 and 12- 61	= S(M,M), (M,T),(T,M) e.g. E= firty, the 6 a sudrat = ((4,6,6) kess,-,sll

Union and intersection

Union

Union $E \cup F$ of events E and F means E and F. Infinite union $\bigcup_i E_i$ of events E_i means at least one of the E_i 's.

Intersection

Intersection $E \cap F$ of events E and F means E and F. Infinite intersection $\bigcap_i E_i$ of events E_i means each of the E_i 's.

Definition

If $E \cap F = \emptyset$, we call events E and F mutually exclusive. If events E_1, E_2, \ldots satisfy $E_i \cap E_j = \emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication

Remark

If the event *E* is a *subset* of the event *F*, written $E \subseteq F$, then the occurrence of *E implies* that of *F*.

Experiment - valing a die

E= frolling 1 (= frolling odd nor 1 = F

Complementarity

Definition

The *complement* of an event *E* is $E^c = \Omega - E$. This is the event that *E* does *not* occur.

EUES=& EnE'=\$

Experiments

Experiments

How events can interact:

- Commutativity
- Distributivity
- Associativity
- De Morgan's Law

Properties of events

• Commutativity: $E \cup F = F \cup E$ $E \cap F = F \cap F$

=

Associativity: $E \cup (F \cup G) = (E \cup F) \cup G$ $E \cap (F \cap G) = (E \cap F) \cap G$

Properties of events

▶ Distributivity: $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$ $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

-

De Morgan's law

Ez you have unseella Fr I have nessella

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c = net here that one of under$

Probability

Probability

- Definition by axioms
- How to compute probabilities
- Inclusion-exclusion principle
- Equally likely outcomes

Axioms of probability

Definition

The probability **P** on a sample space Ω assigns numbers to events of Ω in such a way that:

- 1. the probability of any event is non-negative: $P(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

$$\mathbf{P}\big(\bigcup_i E_i\big) = \sum_i \mathbf{P}(E_i)$$

How to compute probabilities

Proposition For any event, $\mathbf{P}(E^c) = 1 - \mathbf{P}(E)$. E and E' are mutually exclusive, EnEC=9 Prod : So by anom 3: P(E) + P(E') = P(A)by anom L: = 1

Corollary We have $\mathbf{P}(\emptyset) = \mathbf{P}(\Omega^c) = 1 - \mathbf{P}(\Omega) = 1 - 1 = 0.$ For any event, $\mathbf{P}(E) = 1 - \mathbf{P}(E^c) \le 1.$

How to compute probabilities

Proposition

For any two events, $\mathbf{P}(E \cup F) = \mathbf{P}(E) + \mathbf{P}(F) - \mathbf{P}(E \cap F)$.

Proposition (*Boole's inequality*)

For any events E_1, E_2, \ldots, E_n :

$$\mathbf{P}\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} \mathbf{P}(E_{i}).$$

Proof by induction on n: base case n=2: $P(E \cup F) = P(E) + P(F) - P(E \cap F) \in P(E) + P(F)$ induction step $P(\bigcup_{i=1}^{n} E_i) = P(\bigcup_{i=1}^{n} E_i) \cup E_{nr_i})$ $= P(\bigcup_{i=1}^{n} E_i) + P(E_{nrr_i}) - P(\dots \cap D)$ $\leq \sum_{i=1}^{n} P(E_i)$

Inclusion-exclusion

Proposition

For any events:

```
\mathbf{P}(E \cup F \cup G) = \mathbf{P}(E) + \mathbf{P}(F) + \mathbf{P}(G)- \mathbf{P}(E \cap F) - \mathbf{P}(E \cap G) - \mathbf{P}(F \cap G)+ \mathbf{P}(E \cap F \cap G).
```

Inclusion-exclusion

Proposition

For any events:

 $\mathbf{P}(E \cup F \cup G) = \mathbf{P}(E) + \mathbf{P}(F) + \mathbf{P}(G)$ $- \mathbf{P}(E \cap F) - \mathbf{P}(E \cap G) - \mathbf{P}(F \cap G)$ $+ \mathbf{P}(E \cap F \cap G).$

 $\mathbf{P}(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{1 \le i \le n} \mathbf{P}(E_i)$ - $\sum_{1 \le i_1 < i_2 \le n} \mathbf{P}(E_{i_1} \cap E_{i_2})$ + $\sum_{1 \le i_1 < i_2 < i_3 \le n} \mathbf{P}(E_{i_1} \cap E_{i_2} \cap E_{i_3})$ - \dots + $(-1)^{n+1} \mathbf{P}(E_1 \cap E_2 \cap \dots \cap E_n).$

Example

Example

In a sports club,

36 members play tennis,	22 play tennis and squash,		
28 play squash,	12 play tennis and badminton,		
18 play badminton,	9 play squash and badminton,		
4 play tennis, squash and badminton.			

How many play at least one of these games?

$$P(T \cup S \cup B) = P(T) + P(S) + P(B) - P(T \cap S) - P(T \cap B) - P(S \cap B) + P(T \cap S \cap B) = \frac{36}{N} + \frac{28}{N} + \frac{12}{N} - \frac{21}{N} - \frac{11}{N} - \frac{2}{N} + \frac{1}{N} = \frac{12}{N}$$

How to compute probabilities

Proposition If $E \subseteq F$, then $\mathbf{P}(F - E) = \mathbf{P}(F) - \mathbf{P}(E)$.

Corollary If $E \subseteq F$, then $\mathbf{P}(E) \leq \mathbf{P}(F)$.

4

Experiment = valling a dia

$$E = \frac{1}{2} \int \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} - \frac{1}{2} \right\}$$

$$\frac{1}{2} = P(E) \leq P(F) = \frac{1}{2}$$

$$\int \left\{ \frac{1}{2} \right\} + \frac{1}{2} = \frac{1}{2}$$

Equally likely outcomes

The return of counting

Finite sample space, $|\Omega| = N < \infty$, has special important case where each experiment outcome has *equal probability*:

$${f P}(\omega)=rac{1}{N}$$
 for all $\omega\in \Omega$

Definition

Outcomes $\omega \in \Omega$ are also called *elementary events*.

$$|f || = |k| + h_{m} = P(E) = \frac{|E|}{|A|} + \frac{k}{N}$$

Example

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 7?

What's wrong with this solution? "The number 7 is one out of the possible values 2, 3, ..., 12 for the sum, and the answer is $\frac{1}{11}$."

$$\mathcal{L} = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} \right]$$

$$P(E) = \frac{1}{36} = \frac{1}{6}$$

Summary

- Counting: permutations, combinations, repetitions
- Events: sample space, union, intersection, complement
- Experiments: distributivity, De Morgan's law
- Probability: axioms, how to compute, equally likely outcomes