Discrete Mathematics and Probability
 Week 7

Chris Heunen

Topics

- Counting: thinking algorithmically
- Events: what could happen in principle
- Experiments: how can events interact
- Probability: quantifying what could happen

Counting

Counting

Basic principles of combinatorics:

- if an experiment has n outcomes; and another experiment has m outcomes,
- then the two experiments jointly have $n \cdot m$ outcomes.

Permutations
Definition
Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n different objects. The permutations of H are the different orders in which you can write all of its elements.

Example: Hose race $\{A, B, C, D, E\}$
$5 \cdot 4 \cdot 3 \cdot 2.1=120$ permutations
e.g. (E, B, A, D, C)
good Given seize

How man?

$$
\begin{aligned}
& n!=n \cdot(n-1) \cdot(n-2) \cdots! \\
& 0!=1
\end{aligned}
$$

Permutations with repetitions
Definition
Let $H=\left\{h_{1} \ldots h_{1}, h_{2} \ldots h_{2}, \ldots, h_{r} \ldots h_{r}\right\}$ be a set of r different types of repeated objects: n_{1} many of h_{1}, n_{2} of $h_{2}, \ldots n_{r}$ of h_{r}. The permutations with repetitions of H are the different orders in which you can write all of its elements.

How many? $n=n_{1}+n_{2}+\cdots$, n_{r} total worijects

$$
\binom{n}{n_{1}, n_{2}, \cdots, n_{r}}=\frac{n!}{n_{1}!\cdot n_{2}!\cdots n_{r}!}
$$

"maltinomial coefficient"
Example: wads with letters $1, B, R, A, C, A, D, A, B, R, A$

$$
(5,2,1,1,2)=83,60
$$

k-Permutations
Definition
Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n different objects. The k-permutations of H are the different ways in which one can pick and write k of its elements of H in order.

How man?

$$
P_{n, k}=\frac{n!}{(n-k)!}
$$

Example: top 3 in hanse race $\langle A, B, C, D, E|$

$$
\begin{aligned}
& \text { egg. }(E, B, A) \\
& \frac{5!}{(5-3)!}=20 \text { possibilities }
\end{aligned}
$$

k-Permutations with repetitions
Definition
Let $H=\left\{h_{1} \ldots, h_{2} \ldots, \ldots, h_{r} \ldots\right\}$ be a set of r different types of repeated objects, each of infinite supply. The k-permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H.

Example: \#3-letten wads of letters of English elphaset $=26^{3}=17576$
4 bit strings of lags $k=2^{k}$
k-Combinations
Definition
Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

How many? $\quad C_{n, k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}$
"binomial coefficient" $C_{, M}=\frac{P_{n, h}}{k:}$

Example: \#ways to fum compile of 5 steers for class of 30

$$
=\binom{30}{5}=\frac{30!}{5!25!}=142506
$$

Events

Events

A mathematical model for experiments:

- Sample space: the set Ω of all possible outcomes
- An event is a collection ${ }^{1}$ of possible outcomes: $E \subseteq \Omega$
- Union $E \cup F$ and intersection $E \cap F$ of events make sense

${ }^{1}$ Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Examples

Union and intersection

```
Union
Union }E\cupF\mathrm{ of events }E\mathrm{ and }F\mathrm{ means }E\mathrm{ and }F\mathrm{ .
Infinite union }\mp@subsup{\bigcup}{i}{}\mp@subsup{E}{i}{}\mathrm{ of events }\mp@subsup{E}{i}{}\mathrm{ means at least one of the E}\mp@subsup{E}{i}{}\mathrm{ 's.
```


Intersection

Intersection $E \cap F$ of events E and F means E and F. Infinite intersection $\bigcap_{i} E_{i}$ of events E_{i} means each of the E_{i} 's.

Definition

If $E \cap F=\emptyset$, we call events E and F mutually exclusive.
If events E_{1}, E_{2}, \ldots satisfy $E_{i} \cap E_{j}=\emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication
Remark
If the event E is a subset of the event F, written $E \subseteq F$, then the occurrence of E implies that of F.

$$
\begin{aligned}
\text { Expenimal } & =\text { rollis a dic } \\
E & =\text { \{rollig } \mid \leqslant\{\text { rolli odd } \text { url } \mid=F
\end{aligned}
$$

Complementarity

Definition

The complement of an event E is $E^{c}=\Omega-E$.
This is the event that E does not occur.

$$
E \cap E^{c}=\varnothing \quad E \cup E^{c}=\Omega
$$

Experiments

Experiments

How events can interact:

- Commutativity
- Distributivity
- Associativity
- De Morgan's Law

Properties of events

- Commutativity: $E \cup F=F \cup E$

- Associativity: $E \cup(F \cup G)=(E \cup F) \cup G$ $E \cap(F \cap G)=(E \cap F) \cap G$

Properties of events

$$
\text { - Distributivity: } \begin{aligned}
(E \cup F) \cap G & =(E \cap G) \cup(F \cap G) \\
(E \cap F) \cup G & =(E \cup G) \cap(F \cup G)
\end{aligned}
$$

De Morgan's law
$E=$ you have unbrella
F_{2} I has uscecle

- De Morgan's law: $(E \cup F)^{c}=E^{c} \cap F^{c}=$ not true thet ona on corke
 nuballc
 = Sa/h has ne cobselfa

$$
(E \cap F)^{c}=
$$

Probability

Probability

- Definition by axioms
- How to compute probabilities
- Inclusion-exclusion principle
- Equally likely outcomes

Axioms of probability

Definition

The probability P on a sample space Ω assigns numbers to events of Ω in such a way that:

1. the probability of any event is non-negative: $\mathrm{P}(E) \geq 0$;
2. the probability of the sample space is one: $\mathbb{P}(\Omega)=1$;
3. for countably many mutually exclusive events E_{1}, E_{2}, \ldots :

$$
\mathbf{P}\left(\bigcup_{i} E_{i}\right)=\sum_{i} \mathbf{P}\left(E_{i}\right)
$$

How to compute probabilities

Proposition
For any event, $\mathbf{P}\left(E^{c}\right)=1-\mathbf{P}(E)$.
Prod: E and E^{c} as mutual, exclusive, $E \cap E^{c}=\varnothing$
So b_{3} anim 3: $P(E)+P\left(E^{c}\right)=P(\Omega)$
by asian L:
$=1$

Corollary
We have $\mathrm{P}(\emptyset)=\mathbf{P}\left(\Omega^{c}\right)=1-\mathrm{P}(\Omega)=1-1=0$.
For any event, $\mathbf{P}(E)=1-\mathbf{P}\left(E^{c}\right) \leq 1$.

How to compute probabilities
Proposition
For any two events, $\mathbf{P}(E \cup F)=\mathbf{P}(E)+\mathbf{P}(F)-\mathbf{P}(E \cap F)$.
Proposition (Boole's inequality)
For any events $E_{1}, E_{2}, \ldots, E_{n}$:

$$
\mathbf{P}\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(E_{i}\right) .
$$

Prod by induction on n :
base care $n=2: \quad P(E \cup F)=P(E)+P(F)-P(E \cap F) \leqslant P(E)+P(F)$
induction step: $\left.P\left(\underset{i=1}{\ddot{\psi}} \epsilon_{i}\right)=P\left(\dot{U}_{i=1} \epsilon_{i}\right) \cup \epsilon_{a r 1}\right)$

$$
\begin{aligned}
&=P\left(l_{i=1} E_{i}\right. \\
&=P\left(\dot{u}_{i} E_{i}\right)+P\left(E_{n \Pi}\right)-P(\cdots \cdots \cdots) \\
& \leq \sum_{i=1}^{i=1} P\left(E_{i}\right)
\end{aligned}
$$

Inclusion-exclusion

Proposition

For any events:

$$
\begin{aligned}
\mathbf{P}(E \cup F \cup G)= & \mathbf{P}(E)+\mathbf{P}(F)+\mathbf{P}(G) \\
& -\mathbf{P}(E \cap F)-\mathbf{P}(E \cap G)-\mathbf{P}(F \cap G) \\
& +\mathbf{P}(E \cap F \cap G)
\end{aligned}
$$

Inclusion-exclusion

Proposition

For any events:

$$
\begin{aligned}
\mathbf{P}(E \cup F \cup G)= & \mathbf{P}(E)+\mathbf{P}(F)+\mathbf{P}(G) \\
& -\mathbf{P}(E \cap F)-\mathbf{P}(E \cap G)-\mathbf{P}(F \cap G) \\
& +\mathbf{P}(E \cap F \cap G) . \\
\mathbf{P}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) & =\sum_{1 \leq i \leq n} \mathbf{P}\left(E_{i}\right) \\
& -\sum_{1 \leq i_{1}<i_{2} \leq n} \mathbf{P}\left(E_{i_{1}} \cap E_{i_{2}}\right) \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \mathbf{P}\left(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}\right) \\
& -\cdots \\
& +(-1)^{n+1} \mathbf{P}\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right) .
\end{aligned}
$$

Example

Example

In a sports club,
36 members play tennis, 22 play tennis and squash,
28 play squash,
18 play badminton, 9 play squash and badminton, 4 play tennis, squash and badminton.

How many play at least one of these games?

$$
\begin{aligned}
P(T \cup S \cup B)= & P(T)+P(S)+P(B) \\
& -P(T \cap S)-P(T \cap B)-P(\operatorname{sib}) \\
& +P(T \cap S \cap B) \\
= & \frac{36}{N}+\frac{28}{N}+\frac{1 P}{N}-\frac{22}{N}-\frac{12}{N}-\frac{9}{N}+\frac{4}{N}=\frac{43}{N}
\end{aligned}
$$

How to compute probabilities
Proposition

$$
\text { If } E \subseteq F \text {, then } \mathbf{P}(F-E)=\mathbf{P}(F)-\mathbf{P}(E) \text {. }
$$

Corollary

$$
\text { If } E \subseteq F \text {, then } \mathbf{P}(E) \leq \mathbf{P}(F) \text {. }
$$

Experimal $=$ rollins a die

$$
E=\{\text { hollis }, \mid \leq\{\text { rollin odd nor } \mid=F
$$

Equally likely outcomes

The return of counting

Finite sample space, $|\Omega|=N<\infty$, has special important case where each experiment outcome has equal probability:

$$
\mathbf{P}(\omega)=\frac{1}{N} \quad \text { for all } \omega \in \Omega
$$

Definition

Outcomes $\omega \in \Omega$ are also called elementary events.

$$
\text { If }|E|=k \text { then } P(E)=\frac{|E|}{|\Omega|}=\frac{k}{N}
$$

Example
Example
Rolling two dice, what is the probability that the sum of the numbers shown is 7 ?

What's wrong with this solution? "The number 7 is one out of the possible values $2,3, \ldots, 12$ for the sum, and the answer is $\frac{1}{11}$."

$$
\begin{aligned}
& \Omega=4(i, j) \quad i, j \in 31,2, \cdots, 6\} \mid \\
& E=\operatorname{sen} \text { in } 7=\{(i, j)|i+j=7|=(1,66,(2,5),(3,5))(4,5),(5,2),(6,1)) \\
& P(E)=\frac{6}{36}=\frac{1}{6}
\end{aligned}
$$

Summary

- Counting: permutations, combinations, repetitions
- Events: sample space, union, intersection, complement
- Experiments: distributivity, De Morgan's law
- Probability: axioms, how to compute, equally likely outcomes

