Discrete Mathematics and Probability
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Topics

» Counting: thinking algorithmically

» Events: what could happen in principle

» Experiments: how can events interact

» Probability: quantifying what could happen
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Counting
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Counting

Basic principles of combinatorics:

> if an experiment has n outcomes;
and another experiment has m outcomes,

P then the two experiments jointly have n- m outcomes.
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Permutations

Definition

Let H = {hy, ho, ..., h,} be a set of n different objects. The
permutations of H are the different orders in which you can write
all of its elements.

5/31



Permutations with repetitions

Definition
Let H=1{hy...h1, hp...ha, ..., h,...h} be a set of r different
types of repeated objects: 11 many of hy, no of hy, ...n, of h,.

The permutations with repetitions of H are the different orders in
which you can write all of its elements.
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k-Permutations

Definition

Let H = {hy, ho, ..., h,} be a set of n different objects. The
k-permutations of H are the different ways in which one can pick
and write k of its elements of H in order.
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k-Permutations with repetitions

Definition

Let H={h1..., hao.oy ..., .} be a set of r different types
of repeated obJects each of |nf|n|te supply. The k-permutations
with repetitions of H are the different orders in which one can
write an ordered sequence of length k using the elements of H.
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k-Combinations

Definition

Let H = {hy, ho, ..., h,} be a set of n different objects. The
k-combinations of H are the different ways in which one can pick k
of its elements without order.
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Events
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Events

A mathematical model for experiments:
» Sample space: the set Q) of all possible outcomes
» An event is a collection! of possible outcomes: £ C ()

» Union E U F and intersection E M F of events make sense

!Sometimes () is too large, and not all subsets are events. Ignore this now.
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Examples
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Union and intersection

Union

Union E U F of events £ and F means E and F.
Infinite union | J; E; of events E; means at least one of the E;'s.

Intersection

Intersection E M F of events £ and F means E and F.
Infinite intersection (). £; of events £; means each of the E;'s.

Definition

If ENF =), we call events £ and F mutually exclusive.

If events £1, o, ... satisfy £; (1 E; = () whenever / # /, we call
them mutually exclusive. They cannot happen at the same time.
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Inclusion and implication

Remark

If the event E is a subset of the event F, written £ C F,
then the occurrence of £ implies that of F.

14/31



Complementarity

The complement of an event E is E< = Q — E.
This is the event that E does not occur.

Definition }
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Experiments
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Experiments

How events can interact:
> Commutativity
» Distributivity
P Associativity
» De Morgan's Law
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Properties of events

» Commutativity: EUF = FUE
ENF=FNE

» Associativity: EU(FUG)=(EUF)UG
EN(FNG)=(ENF)NG
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Properties of events

» Distributivity: (EUF)NG=(ENG)U(FNG)
(ENF)UG=(EUG)N(FUQG)
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De Morgan's law

» De Morgan's law: (E U F)© = E“N F*©
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Probability

» Definition by axioms
> How to compute probabilities
» Inclusion-exclusion principle

» Equally likely outcomes
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Axioms of probability

Definition
The probability P on a sample space () assigns numbers to events
of 2 in such a way that:

1. the probability of any event is non-negative: P(E) > 0;

2. the probability of the sample space is one: P(Q) = 1;

3. for countably many mutually exclusive events Eq, E>, .. .:

P(UE) = D_P(E)
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How to compute probabilities

Proposition
For any event, P(E°) =1 — P(E). J

Corollary
We have P(0) = P(Q°) =1 - P(Q)

=1l=1=0.
For any event, P(E) =1 — P(E°) < 1.
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How to compute probabilities

Proposition
For any two events, P(E UF) =P(E) +P(F) — P(ENF).

Proposition (Boole’s inequality)

For any events E;, Eo, ..., E,:

P (U E,-) < Z P(E).
i=1 i=1
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Inclusion-exclusion

Proposition

For any events:
P(EUFUG)=P(E)+P(F)+P(G)
—P(ENF)-P(ENG)—-P(FNG)
+P(ENFNG).
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Inclusion-exclusion

Proposition

For any events:

P(EUFUG)=P(E)+P(F)+P(G)
—P(ENF)-P(ENG)—-P(FNG)
+P(ENFNG).

P(EEUEU---UE)= > P(E)
1<i<n

— Y P(E,NE,)

1<i<ih<n

+ Z P(E, NE,N E,'3)
1<i<ih<ia<n

+ (-1)"P(EENEN---NEy).
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Example

Example

In a sports club,
36 members play tennis, 22 play tennis and squash,
28 play squash, 12 play tennis and badminton,

18 play badminton, 9 play squash and badminton,
4 play tennis, squash and badminton.

How many play at least one of these games?
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How to compute probabilities

Proposition
If EC F, then P(F — E) = P(F) — P(E).

Corollary
IfE C F, then P(E) < P(F).
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Equally likely outcomes
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The return of counting

Finite sample space, |Q2| = N < oo, has special important case
where each experiment outcome has equal probability:

for all w € Q

Definition
Outcomes w & ) are also called elementary events. J
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Example

Example

Rolling two dice, what is the probability that the sum of the
numbers shown is 77

What's wrong with this solution? “The number 7 is one out of the
possible values 2,3, ..., 12 for the sum, and the answer is ﬁ.”
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Summary

» Counting: permutations, combinations, repetitions
» Events: sample space, union, intersection, complement
» Experiments: distributivity, De Morgan's law

» Probability: axioms, how to compute, equally likely outcomes
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