Discrete Mathematics and Probability Week 7

Chris Heunen

Topics

- ► Counting: thinking algorithmically
- Events: what could happen in principle
- Experiments: how can events interact
- Probability: quantifying what could happen

Counting

Counting

Basic principles of combinatorics:

- ▶ if an experiment has n outcomes; and another experiment has m outcomes,
- ▶ then the two experiments jointly have $n \cdot m$ outcomes.

Permutations

Definition

Let $H = \{h_1, h_2, \dots, h_n\}$ be a set of n different objects. The *permutations* of H are the different orders in which you can write all of its elements.

Permutations with repetitions

Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1 , n_2 of h_2 , ... n_r of h_r . The permutations with repetitions of H are the different orders in which you can write all of its elements.

k-Permutations

Definition

Let $H = \{h_1, h_2, \dots, h_n\}$ be a set of n different objects. The k-permutations of H are the different ways in which one can pick and write k of its elements of H in order.

k-Permutations with repetitions

Definition

Let $H = \{h_1, \dots, h_2, \dots, h_r, \dots\}$ be a set of r different types of repeated objects, each of infinite supply. The k-permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H.

k-Combinations

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

Events

Events

A mathematical model for experiments:

- ▶ Sample space: the set Ω of all possible outcomes
- ▶ An *event* is a collection¹ of possible outcomes: $E \subseteq \Omega$
- ▶ Union $E \cup F$ and intersection $E \cap F$ of events make sense

 $^{^{1}}$ Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Examples

Union and intersection

Union

Union $E \cup F$ of events E and F means E and F. Infinite union $\bigcup_i E_i$ of events E_i means at least one of the E_i 's.

Intersection

Intersection $E \cap F$ of events E and F means E and F. Infinite intersection $\bigcap_i E_i$ of events E_i means each of the E_i 's.

Definition

If $E \cap F = \emptyset$, we call events E and F mutually exclusive. If events E_1, E_2, \ldots satisfy $E_i \cap E_j = \emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication

Remark

If the event E is a *subset* of the event F, written $E \subseteq F$, then the occurrence of E implies that of F.

Complementarity

Definition

The *complement* of an event E is $E^c = \Omega - E$.

This is the event that *E* does *not* occur.

Experiments

Experiments

How events can interact:

- Commutativity
- Distributivity
- Associativity
- ▶ De Morgan's Law

Properties of events

Commutativity: $E \cup F = F \cup E$ $E \cap F = F \cap E$

Associativity:
$$E \cup (F \cup G) = (E \cup F) \cup G$$

 $E \cap (F \cap G) = (E \cap F) \cap G$

Properties of events

Distributivity:
$$(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$$

 $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

De Morgan's law

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c$

Probability

- ► Definition by axioms
- ► How to compute probabilities
- ► Inclusion-exclusion principle
- ► Equally likely outcomes

Axioms of probability

Definition

The probability P on a sample space Ω assigns numbers to events of Ω in such a way that:

- 1. the probability of any event is non-negative: $P(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events $E_1, E_2, ...$:

$$\mathbf{P}\big(\bigcup_i E_i\big) = \sum_i \mathbf{P}(E_i)$$

How to compute probabilities

Proposition

For any event, $P(E^c) = 1 - P(E)$.

Corollary

We have $P(\emptyset) = P(\Omega^c) = 1 - P(\Omega) = 1 - 1 = 0$. For any event, $P(E) = 1 - P(E^c) \le 1$.

How to compute probabilities

Proposition

For any two events, $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

Proposition (Boole's inequality)

For any events E_1, E_2, \ldots, E_n :

$$\mathbf{P}\left(\bigcup_{i=1}^n E_i\right) \leq \sum_{i=1}^n \mathbf{P}(E_i).$$

Inclusion-exclusion

Proposition

For any events:

$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$
$$- P(E \cap F) - P(E \cap G) - P(F \cap G)$$
$$+ P(E \cap F \cap G).$$

Inclusion-exclusion

Proposition

For any events:

$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$

$$- P(E \cap F) - P(E \cap G) - P(F \cap G)$$

$$+ P(E \cap F \cap G).$$

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{1 \le i \le n} P(E_i)$$

$$- \sum_{1 \le i_1 < i_2 \le n} P(E_{i_1} \cap E_{i_2})$$

$$+ \sum_{1 \le i_1 < i_2 < i_3 \le n} P(E_{i_1} \cap E_{i_2} \cap E_{i_3})$$

$$- \dots$$

$$+ (-1)^{n+1} P(E_1 \cap E_2 \cap \dots \cap E_n).$$

Example

Example

In a sports club,

36 members play tennis, 22 play tennis and squash,

28 play squash, 12 play tennis and badminton,

18 play badminton, 9 play squash and badminton,

4 play tennis, squash and badminton.

How many play at least one of these games?

How to compute probabilities

Proposition

If
$$E \subseteq F$$
, then $P(F - E) = P(F) - P(E)$.

Corollary

If $E \subseteq F$, then $P(E) \leq P(F)$.

Equally likely outcomes

The return of counting

Finite sample space, $|\Omega| = N < \infty$, has special important case where each experiment outcome has *equal probability*:

$$\mathbf{P}(\omega) = \frac{1}{N}$$
 for all $\omega \in \Omega$

Definition

Outcomes $\omega \in \Omega$ are also called *elementary events*.

Example

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 7?

What's wrong with this solution? "The number 7 is one out of the possible values 2, 3, . . . , 12 for the sum, and the answer is $\frac{1}{11}$."

Summary

- ► Counting: permutations, combinations, repetitions
- ▶ Events: sample space, union, intersection, complement
- Experiments: distributivity, De Morgan's law
- ▶ Probability: axioms, how to compute, equally likely outcomes