Discrete Mathematics and Probability
 Week 7

Chris Heunen

Topics

- Counting: thinking algorithmically
- Events: what could happen in principle
- Experiments: how can events interact
- Probability: quantifying what could happen

Counting

Counting

Basic principles of combinatorics:

- if an experiment has n outcomes; and another experiment has m outcomes,
- then the two experiments jointly have $n \cdot m$ outcomes.

Permutations

Definition

Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n different objects. The permutations of H are the different orders in which you can write all of its elements.

Permutations with repetitions

Definition

Let $H=\left\{h_{1} \ldots h_{1}, h_{2} \ldots h_{2}, \ldots, h_{r} \ldots h_{r}\right\}$ be a set of r different types of repeated objects: n_{1} many of h_{1}, n_{2} of $h_{2}, \ldots n_{r}$ of h_{r}. The permutations with repetitions of H are the different orders in which you can write all of its elements.

k-Permutations

Definition

Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n different objects. The k-permutations of H are the different ways in which one can pick and write k of its elements of H in order.

k-Permutations with repetitions

Definition

Let $H=\left\{h_{1} \ldots, h_{2} \ldots, \ldots, h_{r} \ldots\right\}$ be a set of r different types of repeated objects, each of infinite supply. The k-permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H.

k-Combinations

Definition

Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

Events

Events

A mathematical model for experiments:

- Sample space: the set Ω of all possible outcomes
- An event is a collection ${ }^{1}$ of possible outcomes: $E \subseteq \Omega$
- Union $E \cup F$ and intersection $E \cap F$ of events make sense
${ }^{1}$ Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Examples

Union and intersection

```
Union
Union }E\cupF\mathrm{ of events }E\mathrm{ and }F\mathrm{ means }E\mathrm{ and }F\mathrm{ .
Infinite union }\mp@subsup{\bigcup}{i}{}\mp@subsup{E}{i}{}\mathrm{ of events }\mp@subsup{E}{i}{}\mathrm{ means at least one of the E E's.
```


Intersection

Intersection $E \cap F$ of events E and F means E and F. Infinite intersection $\bigcap_{i} E_{i}$ of events E_{i} means each of the E_{i} 's.

Definition

If $E \cap F=\emptyset$, we call events E and F mutually exclusive.
If events E_{1}, E_{2}, \ldots satisfy $E_{i} \cap E_{j}=\emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication

Remark

If the event E is a subset of the event F, written $E \subseteq F$, then the occurrence of E implies that of F.

Complementarity

Definition

The complement of an event E is $E^{c}=\Omega-E$.
This is the event that E does not occur.

Experiments

Experiments

How events can interact:

- Commutativity
- Distributivity
- Associativity
- De Morgan's Law

Properties of events

- Commutativity: $E \cup F=F \cup E$

$$
E \cap F=F \cap E
$$

- Associativity: $E \cup(F \cup G)=(E \cup F) \cup G$ $E \cap(F \cap G)=(E \cap F) \cap G$

Properties of events

- Distributivity: $(E \cup F) \cap G=(E \cap G) \cup(F \cap G)$

$$
(E \cap F) \cup G=(E \cup G) \cap(F \cup G)
$$

De Morgan's law

- De Morgan's law: $(E \cup F)^{c}=E^{c} \cap F^{c}$

Probability

- Definition by axioms
- How to compute probabilities
- Inclusion-exclusion principle
- Equally likely outcomes

Axioms of probability

Definition

The probability P on a sample space Ω assigns numbers to events of Ω in such a way that:

1. the probability of any event is non-negative: $\mathrm{P}(E) \geq 0$;
2. the probability of the sample space is one: $\mathbb{P}(\Omega)=1$;
3. for countably many mutually exclusive events E_{1}, E_{2}, \ldots :

$$
\mathbf{P}\left(\bigcup_{i} E_{i}\right)=\sum_{i} \mathbf{P}\left(E_{i}\right)
$$

How to compute probabilities

Proposition

For any event, $\mathrm{P}\left(E^{c}\right)=1-\mathrm{P}(E)$.

Corollary

We have $\mathrm{P}(\emptyset)=\mathbf{P}\left(\Omega^{c}\right)=1-\mathrm{P}(\Omega)=1-1=0$.
For any event, $\mathbf{P}(E)=1-\mathbf{P}\left(E^{c}\right) \leq 1$.

How to compute probabilities

Proposition

For any two events, $\mathbf{P}(E \cup F)=\mathbf{P}(E)+\mathbf{P}(F)-\mathbf{P}(E \cap F)$.

Proposition (Boole's inequality)
For any events $E_{1}, E_{2}, \ldots, E_{n}$:

$$
\mathbf{P}\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(E_{i}\right)
$$

Inclusion-exclusion

Proposition
For any events:

$$
\begin{aligned}
\mathbf{P}(E \cup F \cup G)= & \mathbf{P}(E)+\mathbf{P}(F)+\mathbf{P}(G) \\
& -\mathbf{P}(E \cap F)-\mathbf{P}(E \cap G)-\mathbf{P}(F \cap G) \\
& +\mathbf{P}(E \cap F \cap G)
\end{aligned}
$$

Inclusion-exclusion

Proposition
For any events:

$$
\begin{aligned}
\mathbf{P}(E \cup F \cup G)= & \mathbf{P}(E)+\mathbf{P}(F)+\mathbf{P}(G) \\
& -\mathbf{P}(E \cap F)-\mathbf{P}(E \cap G)-\mathbf{P}(F \cap G) \\
& +\mathbf{P}(E \cap F \cap G) . \\
\mathbf{P}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) & =\sum_{1 \leq i \leq n} \mathbf{P}\left(E_{i}\right) \\
& -\sum_{1 \leq i_{1}<i_{2} \leq n} \mathbf{P}\left(E_{i_{1}} \cap E_{i_{2}}\right) \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \mathbf{P}\left(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}\right) \\
& -\cdots \\
& +(-1)^{n+1} \mathbf{P}\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right) .
\end{aligned}
$$

Example

Example

In a sports club,
36 members play tennis, 22 play tennis and squash, 28 play squash, $\quad 12$ play tennis and badminton, 18 play badminton, 9 play squash and badminton, 4 play tennis, squash and badminton.

How many play at least one of these games?

How to compute probabilities

Proposition

$$
\text { If } E \subseteq F \text {, then } \mathbf{P}(F-E)=\mathbf{P}(F)-\mathbf{P}(E)
$$

Corollary
If $E \subseteq F$, then $\mathbf{P}(E) \leq \mathbf{P}(F)$.

Equally likely outcomes

The return of counting

Finite sample space, $|\Omega|=N<\infty$, has special important case where each experiment outcome has equal probability:

$$
\mathbf{P}(\omega)=\frac{1}{N} \quad \text { for all } \omega \in \Omega
$$

Definition

Outcomes $\omega \in \Omega$ are also called elementary events.

Example

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 7?

What's wrong with this solution? "The number 7 is one out of the possible values $2,3, \ldots, 12$ for the sum, and the answer is $\frac{1}{11}$."

Summary

- Counting: permutations, combinations, repetitions
- Events: sample space, union, intersection, complement
- Experiments: distributivity, De Morgan's law
- Probability: axioms, how to compute, equally likely outcomes

