Discrete Mathematics and Probability
 Week 7

Chris Heunen

Topics

- Recap: examples with equally likely outcomes
- Conditional probability: how knowledge influences probability
- Bayes' theorem: link probabilities of related events

Recap

Permutations and combinations
Example
An urn contains 6 red balls and 5 blue balls.
Draw three balls at random, at once (that is, without replacement).
What is the chance of drawing one red and two blue balls?

$$
\begin{aligned}
& \Omega=\{\text { nelued choices of } 3 \text { out of } 11 /=\{3 \text { pernetains of } 1\} \\
& |\Omega|=\frac{m!}{(11-3)!=11.20 .9} \\
& E=\{R B B, B R B, B B R\} \\
& \begin{array}{lll}
6.5 .4 & \zeta_{5.6 .5} & \zeta_{5.5 .6} \text { val }
\end{array} \\
& |E|=3 \cdot 5 \cdot 5 \cdot 6 \\
& P(E)=\frac{|E|}{|\Omega|}=\frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 10 \cdot 11}=\frac{4}{11}
\end{aligned}
$$

$$
\begin{aligned}
& \Omega=\{\text { unadered choices of } 3 \text { of } n\}=\{3 \text {-combination of " }\rangle \\
& |\Omega|=\binom{\prime \prime}{3}=\frac{11.10 \cdot 9}{6} \\
& E=\{\text { pich } 1006 \text { red Lalls, } 2085 \text { slue balls }\} \\
& |E|=\binom{6}{1} \cdot\binom{5}{2}=6.10 \\
& P(E)=\frac{|E|}{1-\Omega \mid}=\frac{6.10}{11.10 .9 / 6}=\frac{4}{11}
\end{aligned}
$$

Both fire. Somutinues nedered easior. Sometines unadered. Never mix the tro!

Permutations and combinations
Example
An urn contains n balls, one of which is red, all others are black. We draw k balls at random (without replacement). What is the chance that the red ball will be drawn?

$$
\begin{aligned}
& \Omega=\langle k \text {-combination of } n\} \\
& |\Omega|=\binom{n}{k} \\
& E=\{\text { pich ned Lall and } k-1 \text { others }\} \\
& |E|=\binom{!}{!}\binom{n-1}{k-1} \\
& P(E)=\frac{|E|}{|\Omega|}=\frac{\binom{!}{!}\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{(n-1))(k!(n-k)!}{(k-1)!(n-1-k+1)!n!}=\frac{k}{n}
\end{aligned}
$$

Drains in aden:

$$
\begin{aligned}
E_{i} & =\{i \text { th draw is red }\} \\
P\left(E_{i}\right) & =\frac{1}{n}
\end{aligned}
$$

$\left\{E_{i}\right\}$ mutually exclusive.

$$
\begin{aligned}
& E=U_{i} E_{i} \\
& P(E)=P\left(U_{i} E_{i}\right)=\sum_{i} P\left(E_{i}\right)=\sum_{i=1}^{k} \frac{1}{n}=k
\end{aligned}
$$

Equally likely events
Example
Out of n people, what is the probability that no two share a birthday?

0 if $n>365$ (pigeonhole principle)

$$
\begin{aligned}
& \Omega=\text { \{choice of day fa each of n people! } \\
& |\Omega|=365^{n} \\
& E=\text { \{no coincides sirtrdo,s'! } \\
& |E|=365 \cdot 364 \cdots(365-n+1)=\frac{365!}{(365-n)!} \\
& P(E)=\frac{|E|}{\mid \Omega!}=\frac{365!}{\left(365-n!!365^{\circ}\right.}
\end{aligned}
$$

n	$P(E)$
10	80%
20	55%
30	29%
40	11%
50	3%
100	0.00003%

Inclusion-exclusion
Example
Flipping two fair coins, what is the probability of at least one coming up heads?

$$
\begin{aligned}
\Omega & =\{(H, H),(H, T),(T, H),(T, T)\} \\
E & =\{(H, H),(H, T),(T, H) \mid \\
P(E) & =\frac{3}{4}
\end{aligned}
$$

or:

$$
\begin{aligned}
& E^{c}=\text { no heads }|=S(T, T)| \\
& P(E)=1-P\left(E^{-c}\right)=1-\frac{1}{4}=3 / 4
\end{aligned}
$$

or:

$$
\begin{aligned}
& F=\left\{\text { first coin } H \mid=\left\{(H, H)_{1}(H, T) \mid\right.\right. \\
& S=\mid \text { ind coin } H\left|=\left|(H, H)_{1}(T, H)\right|\right. \\
& P(F \cup G)=P(F)+P(S)-P(F \cap S)=\frac{2}{4}+\frac{2}{4}-\frac{1}{4}=\frac{3}{4}
\end{aligned}
$$

Conditional probability

Conditional probability
Often you have partial information about the outcome of an experiment. This alters the likelihoods for various outcomes.

Example
Roll two dice. What is the probability that the sum of the numbers is 8 ? What if we know that the first die shows a 5 ?

$$
\begin{aligned}
& \Omega=4,, \ldots,\left.6\right|^{2} \\
& E=\{(2,6),(3,5), \ldots,(6,2) \mid \\
& P(E)=\frac{5}{36}
\end{aligned}
$$

but if first die 135 :

$$
\begin{aligned}
& \Omega=\{1, \ldots, 6 \mid \\
& F=\{3 \mid \\
& P(F)=\frac{1}{6}
\end{aligned}
$$

partial information can change poobusilify!

Reduced sample space

We reduced our world to the event we were given:
$F=\{$ first die shows 5$\}=\{(5,1),(5,2), \ldots,(5,6)\}$

Definition

The event that is given to us is called a reduced sample space. We can simply work in this set to figure out the conditional probabilities given this event.

The event F has 6 equally likely outcomes. Only one of them, $(5,3)$, provides a sum of 8 . Hence the conditional probability is $\frac{1}{6}$.

Definition of conditional probability

The question can be reformulated.

$$
E=\{\text { the sum is } 8\}=\{(2,6),(3,5), \ldots,(6,2)\}
$$

"In what proportion of cases in F will E also occur?"
"How does probability of ' E and F ' compare to probability of F ?"

Definition

Let F be an event with $\mathrm{P}(F)>0$.
The conditional probability of E given F is:

$$
\mathbf{P}(E \mid F)=\frac{\mathbf{P}(E \cap F)}{\mathbf{P}(F)}
$$

$E_{\cap} F=\{(5,3)\}$

$$
P(E) F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 36}{1 / 6}=\frac{1}{6}
$$

Axioms

Proposition

Conditional probability $\mathrm{P}(\cdot \mid F)$ satisfies the axioms of probability:

1. conditional probability is non-negative: $\mathbf{P}(E \mid) \geq 0$;
2. conditional probability of sample space is one: $\mathbf{P}(\Omega \mid F)=1$;
3. for countably many mutually exclusive events E_{1}, E_{2}, \ldots :

$$
\mathbf{P}\left(\bigcup_{i} E_{i} \mid F\right)=\sum_{i} \mathbf{P}\left(E_{i} \mid F\right)
$$

How to compute conditional probabilities

Corollary

- $\mathbf{P}\left(E^{c} \mid F\right)=1-\mathbf{P}(E \mid F)$
- $\mathbf{P}(\emptyset \mid F)=0$
- $\mathbf{P}(E \mid F\}=1-\mathbf{P}\left(E^{c} \mid F\right) \leq 1$
- $\mathbf{P}(E \cup G \mid F)=\mathbf{P}(E \mid F)+\mathbf{P}(G \mid F)-\mathbf{P}(E \cap G \mid F)$
- If $E \subseteq G$, then $\mathrm{P}(G-E \mid F)=\mathrm{P}(G \mid F)-\mathrm{P}(E \mid F)$
- If $E \subseteq G$, then $\mathbf{P}(E \mid F) \leq \mathbf{P}(G \mid F)$

BUT: Don't change the condition!
$\mathbf{P}\{E \mid F\}$ and $\mathbf{P}\left\{E \mid F^{c}\right\}$ have nothing to do with each other.

Multiplication rule
Proposition (Multiplication rule)

$$
\begin{aligned}
& \mathbf{P}\left(E_{1} \cap \cdots \cap E_{n}\right)= \mathbf{P}\left(E_{1}\right) \cdot \mathbf{P}\left(E_{2} \mid E_{1}\right) \cdot \mathbf{P}\left(E_{3} \mid E_{1} \cap E_{2}\right) \\
& \cdots \mathbf{P}\left(E_{n} \mid E_{1} \cap \cdots \cap E_{n-1}\right) \\
&=P\left(E_{1}\right) \cdot \frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)} \cdot \frac{P\left(E_{3} \cap E_{2} \cap E_{1}\right)}{P\left(E_{\cap} \cap E_{l}\right)} \ldots \frac{P\left(E_{n} \cap \cdots \cap E_{1}\right)}{P\left(E_{n} \cap \cdots \cap E_{1}\right)}
\end{aligned}
$$

Example again
Example
An urn contains 6 red and 5 blue balls. We draw three balls at random, at once (that is, without replacement). What is the chance of drawing one red and two blue balls?

$$
\begin{aligned}
& P\left(R_{1} \cap B_{2} \cap B_{3}\right)+P\left(B_{1} \cap R_{2} \cap B_{3}\right)+P\left(B_{1} \cap B_{1} \cap R_{3}\right) \\
& \quad=P\left(R_{1}\right) \cdot P\left(B_{2} \mid R_{1}\right) \cdot P\left(B_{3} \mid R_{1} \cap B_{2}\right) \\
& \quad+P\left(B_{1}\right) \cdot P\left(R_{2} \mid B_{1}\right) \cdot P\left(B_{3} \mid R_{2} \cap B_{1}\right) \\
& \quad+P\left(B_{1}\right) \cdot P\left(B_{2} \mid B_{1}\right) \cdot P\left(R_{3} \mid B_{1} \cap B_{2}\right) \\
& = \\
& \frac{6}{11} \cdot \frac{5}{10} \cdot \frac{4}{9}+\frac{5}{11} \cdot \frac{6}{10} \cdot \frac{4}{9}+\frac{5}{11} \cdot \frac{4}{10} \cdot \frac{6}{9}=\frac{4}{11}
\end{aligned}
$$

Bayes' theorem

Bayes' Theorem

The aim is to say something about $\mathbf{P}(F \mid E)$, once we know $\mathbf{P}(E \mid F)$ (and other things...). This will be very useful, and serve as a fundamental tool in probability and statistics.

The Law of Total Probability
Theorem (Partition Theorem)

$$
\mathbf{P}(E)=\mathbf{P}(E \mid F) \cdot \mathbf{P}(F)+\mathbf{P}\left(E \mid F^{c}\right) \cdot \mathbf{P}\left(F^{c}\right)
$$

$$
\begin{aligned}
& =\frac{P(E \cap F)}{P(F)} \cdot P(F)+\frac{P\left(E \cap F^{C}\right)}{P(P Q)} \cdot P\left(F^{*}\right) \\
& =P\left((E \cap F) \cup\left(E \cap F^{\circ}\right)\right) \\
& =P\left(E \cap\left(F \cup F^{\prime}\right)\right. \\
& =P(E)
\end{aligned}
$$

The Law of Total Probability

Theorem (Partition Theorem)

$$
\mathbf{P}(E)=\mathbf{P}(E \mid F) \cdot \mathbf{P}(F)+\mathbf{P}\left(E \mid F^{c}\right) \cdot \mathbf{P}\left(F^{c}\right)
$$

Definition

Countably many events F_{1}, F_{2}, \ldots form a partition of Ω if $F_{i} \cap F_{j}=\emptyset$ and $\bigcup_{i} F_{i}=\Omega$.

Theorem (Partition Theorem)
For any event E and any partition F_{1}, F_{2}, \ldots :

$$
\mathbf{P}(E)=\sum_{i} \mathbf{P}\left(E \mid F_{i}\right) \cdot \mathbf{P}\left(F_{i}\right)
$$

Example
Example
According to an insurance company:

- 30% of population are accident-prone:
they will have an accident in any given year with 0.4 chance.
70% of population are careful:
they have an accident in any given year with 0.2 chance.
How likely is a new customer to have an accident in 2023?
$F=\{$ nev customer is error-prone $\}$
$A=\{$ nev customer hes accident in 2023\} ~

$$
\begin{aligned}
P(A) & =P(A \mid F) \cdot P(F)+P\left(A \mid F^{\prime}\right) \cdot P\left(F^{\top}\right) \\
& =0.4 \cdot 0.3+0.2 \cdot 0.7 \leftarrow e \\
& =26 \%
\end{aligned}
$$

Bayes' Theorem
Theorem (Bayes' Theorem)

$$
\mathbf{P}\{F \mid E\}=\frac{\mathbf{P}\{E \mid F\} \cdot \mathbf{P}\{F\}}{\mathbf{P}\{E \mid F\} \cdot \mathbf{P}\{F\}+\mathbf{P}\left\{E \mid F^{c}\right\} \cdot \mathbf{P}\left\{F^{c}\right\}}
$$

If $\left\{F_{i}\right\}_{i}$ partitions Ω, then:

$$
\mathbf{P}\left\{F_{i} \mid E\right\}=\frac{\mathbf{P}\left\{E \mid F_{i}\right\} \cdot \mathbf{P}\left\{F_{i}\right\}}{\sum_{j} \mathbf{P}\left\{E \mid F_{j}\right\} \cdot \mathbf{P}\left\{F_{j}\right\}}
$$

Pf: def of conditional + lan of total prob.

Belief update

Example

Consider the insurance company again. Imagine it's now 2024. We learn that the new customer did have an accident in 2023. Now what is the chance that they are accident-prone?

$$
\begin{aligned}
& P(F \mid A)=\frac{P(A \mid F) \cdot P(F)}{P(A \mid F) \cdot P(F)+P\left(A \mid F^{C}\right) \cdot P\left(F^{C}\right)} \\
&=\frac{0.4 \cdot 0.3}{0.4 \cdot 0.3+0.2 \cdot 0.7}=\frac{6}{13} \approx 46 \% \\
& P(F)=30 \%!
\end{aligned}
$$

Summary

- Probability: multiple ways to compute
- Conditional probability: reduced sample space, multiplication rule
- Bayes' theorem: partition theorem, belief update

