## Discrete Mathematics and Probability <br> Week 8



Chris Heunen

## Topics

- Bernoulli distribution: single trial
- Binomial distribution: many independent trials
- Poisson distribution: counting independent trials
- Geometric distribution: first success in independent trials


## Bernoulli and Binomial distributions

Bernoulli distribution

Definition
Suppose that $n$ independent trials are performed, each succeeding with probability $p$. Let $X$ count the number of successes within the $n$ trials. Then $X$ has the Binomial distribution with parameters $n$ and $p$ or, in short, $X \sim \operatorname{Binom}(n, p)$.

Special case $n=1$ is called Bernoulli distribution with parameter $p$.
Bernoulli = indicator variable

$$
x= \begin{cases}1 & \text { if } E \text { occurs } \\ 0 & \text { if } E^{c} \text { occurs }\end{cases}
$$

## Bernoulli: mass function

## Proposition

Let $X \sim \operatorname{Binom}(n, p)$. Then $X=0,1, \ldots, n$, and its mass function is

$$
\mathfrak{p}(i)=\mathbf{P}(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}, \quad i=0,1, \ldots, n .
$$

In particular, the Bernoulli( $p$ ) variable can take on values 0 or 1 , with respective probabilities

$$
\mathfrak{p}(0)=1-p, \quad \mathfrak{p}(1)=p .
$$

Mass function

$$
\begin{aligned}
& p(i) \geqslant 0 \\
& \sum_{i=0}^{n} p(i)=\sum_{i=1}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}=(p+(1-p))^{n}=1 \\
& \zeta
\end{aligned}
$$

Nenton's Binonvial Thearm:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{k} \cdot y^{n-k}
$$

Example

Screws are sold in packs of 10.
Each one is defechle $\operatorname{win}$ probability 0.1
If more than one screw is defective, you can return pack What percentage of packs is retired?
$X=$ ur defective screws
$x \sim \operatorname{Binom}(10,0.1)$

$$
\begin{aligned}
P(x \geqslant 2) & =1-P(x=0)-P(x=1) \\
& =1-\binom{10}{0} 0.1^{\circ} 0.9^{\circ}-\binom{10}{1} 0.1^{1} 0.9^{9}=26 \%
\end{aligned}
$$

Bernoulli: expectation, variance
Proposition
Let $X \sim \operatorname{Binom}(n, p)$. Then:

$$
\mathbf{E} X=n p, \quad \text { and } \quad \operatorname{Var} X=n p(1-p)
$$

Proof:

$$
\begin{aligned}
\mathbb{E} x=\sum_{i} i \cdot p(i) & =\sum_{i=0}^{n} i\binom{n}{i} \cdot p^{i} \cdot(1-p)^{n-i} \\
& \left.\left.=\sum_{i=0}^{n} \quad\binom{n}{i} \frac{d}{d t}\right)^{i}\right)_{i=1} \cdot p^{i}(1-p)^{n-i} \\
& =\left.\frac{d}{d t}\left(\sum_{i=0}^{n}\binom{n}{i}(t p)^{i}(1-p)^{n-i}\right)\right|_{t=1} \\
\text { Nathan } \sigma & =\left.\frac{d}{d t}\left(t_{p}+1-\rho\right)^{n}\right|_{t=1} \\
& =n\left(t_{p}+1-p\right)^{n-1} \mid t=1 \\
& =n p
\end{aligned}
$$

Trick: $\quad i=\left.\frac{d}{d t} t^{i}\right|_{t=1}$

Proof
Trick $i(i-1)=\left.\frac{d^{2}}{d t^{2}} t^{i}\right|_{t=1}$

$$
\begin{aligned}
\mathbb{E}(x(x-1)) & =\sum_{i=0}^{n}\binom{n}{i} i\left(\begin{array}{l}
i-1
\end{array}\right) p^{i}(1-p)^{n-1} \\
& =\left.\sum_{i=0}^{n}\binom{n}{i} \frac{d^{2}}{d t^{2}} t^{i}\right|_{t=1} p^{i}(1-p)^{n-i} \\
& =\left.\frac{d^{2}}{d t^{2}}\left(\sum_{i=0}^{n}\binom{n}{i}(t p)^{i}(1-p)^{n-i}\right)\right|_{t=1} \\
& =\left.\frac{d^{2}}{d t^{2}}(t p+1-p)^{n}\right|_{t=1} \\
& =n(n-1)(t p+1-p)^{n-2} p^{2} \mid t=1 \\
& =n(n-1) p^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Wan } x & =\mathbb{E} X^{2}-(\mathbb{E} X)^{2} \\
& =\mathbb{E}\left(X^{2}-X\right)+\mathbb{E} x-(\mathbb{E} X)^{4} \\
& =n(n-1) p^{2}+n p-(n p)^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-\operatorname{mpp}^{2} \\
& =n p(1-p)
\end{aligned}
$$

## Poisson distribution

## Poisson: mass function

The Poisson distribution is of central importance in Probability. Will later see relation to Binomial.

## Definition

Fix a positive real number $\lambda$. The random variable $X$ is Poisson distributed with parameter $\lambda$, in short $X \sim \operatorname{Poi}(\lambda)$, if it is non-negative integer valued, and its mass function is

$$
\mathfrak{p}(i)=\mathbf{P}(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}, \quad i=0,1,2, \ldots
$$

Indeed a p.m.f.
Fine, but why this distribution?

Poisson approximation of Binomial
Proposition
Fix $\lambda>0$, and suppose that $Y_{n} \sim \operatorname{Binom}(n, p)$ with $p=p(n)$ in such a way that $n \cdot p \rightarrow \lambda$. Then the distribution of $Y_{n}$ converges to Poisson ( $\lambda$ ):

$$
\forall i \geq 0 \quad \mathbf{P}\left(Y_{n}=i\right) \underset{n \rightarrow \infty}{\longrightarrow} e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Take $y \sim \operatorname{Binom}(n, p)$ with large $n$, small $p$, such that $n p \approx \lambda$ Then $y$ is approximately Poison ( $\lambda$ ) disinbuted.

Proof

$$
\begin{aligned}
& P\left(y_{n}=i\right)=\binom{n}{i} p^{i}(1-p)^{n-i} \\
& =\frac{1}{i!} \cdot n p \cdot(n-1) p \cdot \cdot(n-i+1) p \cdot \frac{(1-p)^{n}}{(1-p)^{i}} \\
& \underset{n \rightarrow \infty}{ } \frac{1}{i!} \cdot \lambda^{i} \cdot e^{-\lambda} \\
& \overbrace{n p \rightarrow \lambda} \\
& (n-1) p \rightarrow \lambda \\
& (n-i+1) p \rightarrow \lambda \\
& (1-p)^{n}=\left(1-\frac{1}{1 / p}\right)^{n} \longrightarrow e^{-\lambda} \\
& (1-p)^{i} \rightarrow \text { ' }
\end{aligned}
$$

Poisson: expectation, variance
Proposition
For $X \sim \operatorname{Poi}(\lambda), E X=\operatorname{Var} X=\lambda$.
$(4 . X \sim \operatorname{Binem}(n, p) \quad \mid E x=n p \quad \operatorname{Han} X=n p(1-p))$
Proof:

$$
\begin{aligned}
& \mathbb{E} X=\sum_{i=0}^{\infty} i p(i)=\sum_{i=1}^{\infty} i \cdot e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \\
& =\lambda \sum_{i=1}^{\infty} i \cdot e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!}=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j^{\prime}}=\lambda \\
& \mathbb{E}(x(x-1))=\sum_{i=0}^{\infty} i(i-1) p(i)=\sum_{i=2}^{\infty} i(i-1) e^{-1} \cdot \frac{\lambda^{i}}{i!} \\
& =\lambda^{2} \sum_{i=2}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-2}}{(i-2)!}=\lambda^{2} \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}=\lambda^{2} \\
& \text { Wan } x=\mathbb{E} x^{2}-(\mathbb{E} X)^{2} \\
& =\mathbb{E}(x(x-1))+\mathbb{E} x-(E x)^{2} \\
& =\lambda^{2}+\lambda-\lambda^{2} \\
& =\lambda
\end{aligned}
$$

Example
Prism: many independent small probability events, summing up to "a few" in expectation
e.g.: -ur of typos on a page of a Look

- he of cititions $\geqslant 100$ years of age in a Ci
-ur calls per hour in customer centre
-ne customers in post office today
book has average of $1 / 2$ typos per page. chance that next page has $\geqslant 3$ typos?

$$
\begin{aligned}
& X \sim P \operatorname{aissch}(\lambda) \\
& \mathbb{E} x=\lambda
\end{aligned}=\begin{aligned}
P(x \geqslant 3) & =1-P(x \leq 2) \\
& =1-P(x=0)-P(x=1)-P(x=2) \\
& =1-\frac{(1 / 2)^{0}}{0!} \cdot e^{-1 / 2}-\frac{(12)^{\prime}}{1!} \cdot e^{-1 /}-\frac{(1 / 2)^{2}}{2!} \cdot e^{-1 / 2} \simeq 1.4 \%
\end{aligned}
$$

Examples

Defective screars.
$X \sim \operatorname{Binom}($ ro, 0.1)
well approximated Ly Poisson(1) as $\lambda=1=10.0 .1=\mathrm{mp}$

$$
\begin{aligned}
P(x \geqslant 2) & =1-P(x=0)-P(x=1) \\
& =1-e^{-1} \cdot \frac{10}{0!}-e^{-1} \cdot \frac{1}{1!} \simeq 26 \%
\end{aligned}
$$

# Geometric distribution 

Geometric: mass function
Again independent trials, but now ask: when is the first success?
Definition
Suppose that independent trials, each succeeding with probability $p$, are repeated until the first success. The total number $X$ of trials made has the $\operatorname{Geometric}(p)$ distribution (in short, $X \sim \operatorname{Geom}(p)$ ).

Proposition
$X$ can take on positive integers, with probabilities

$$
\mathfrak{p}(i)=(1-p)^{i-1} \cdot p, i=1,2, \ldots .
$$

Proof: $p(i) \geqslant 0$

$$
\sum_{i=1}^{\infty} p(i)=\sum_{i=1}^{\infty}(1-p)^{i+1} \cdot \rho=\frac{p}{1-(1-p)}=1
$$

## Geometric: mass function

Note: if $k \geqslant 1$ then $P(x \geqslant k)=(1-p)^{k-1}$ : at leart $k-1$ failures

## Corollary

The Geometric random variable is (discrete) memoryless:

$$
\mathbf{P}\{X \geq n+k \mid X>n\}=\mathbf{P}\{X \geq k\}
$$

for every $k \geq 1, n \geq 0$.

Geometric: expectation, variance
Proposition
For a Geometric $(p)$ random variable $X$ :

$$
\mathbf{E} X=\frac{1}{p} \quad \operatorname{Var} X=\frac{1-p}{p^{2}}
$$

Proof: $\mathbb{E} X=\sum_{i=1}^{\infty} i \cdot(1-p)^{i-1} \cdot p=\sum_{i=0}^{\infty} r \cdot(1-p)^{i \cdots \cdot p}$

$$
\begin{aligned}
& =\left.\sum_{i=0}^{\infty} \frac{d}{d t} t^{i}\right|_{t=1} \cdot(1-p)^{i-1} \cdot p=\left.\frac{d}{d t}\left(\sum_{i=0}^{\infty} t^{i} \cdot(1-p)^{1-1} \cdot p\right)\right|_{i=1} \\
& =\left.\frac{p}{1-\rho} \cdot \frac{d}{d t} \frac{1}{1-(-p) t}\right|_{t=1} \\
& =\frac{\rho}{1-\rho} \cdot \frac{1-\rho}{(1-(1-p))^{2}}=\frac{1}{p}
\end{aligned}
$$

Example
first 3 appearing on fair die takes $x \sim \operatorname{Ceam}\left(\frac{1}{6}\right) \mathrm{rol} / \mathrm{s}$.

$$
\begin{aligned}
& \text { E } x=\frac{1}{1 / 6}=6 \\
& \text { SD } x=\sqrt{\operatorname{Van} x}=\sqrt{\frac{1-1 / 6}{(1 / 6)^{2}}}=\sqrt{30} \simeq 5.48
\end{aligned}
$$

Chance that first 3 comes on $7^{\text {th }}$ roll is

$$
p(7)=p(x=7)=\left(1-\frac{1}{6}\right)^{6} \cdot \frac{1}{6}=5.6 \%
$$

or later:

$$
p(x \geqslant 7)=\left(1-\frac{1}{6}\right)^{6} \simeq 33.5 \%
$$

## Summary

- Bernoulli distribution: single trial
- Binomial distribution: many independent trials
- Poisson distribution: counting independent trials
- Geometric distribution: first success in independent trials

