Discrete Mathematics and Probability Week 8

Chris Heunen

Topics

- Bernoulli distribution: single trial
- Binomial distribution: many independent trials
- Poisson distribution: counting independent trials
- Geometric distribution: first success in independent trials

Bernoulli and Binomial distributions

Bernoulli distribution

Definition

Suppose that *n* independent trials are performed, each succeeding with probability *p*. Let *X* count the number of successes within the *n* trials. Then *X* has the *Binomial distribution with parameters n* and *p* or, in short, $X \sim Binom(n, p)$.

Special case n = 1 is called *Bernoulli distribution with parameter p*.

Bernoulli: mass function

Proposition

Let $X \sim Binom(n, p)$. Then X = 0, 1, ..., n, and its mass function is

$$\mathfrak{p}(i) = \mathbf{P}(X = i) = {n \choose i} p^i (1 - p)^{n-i}, \qquad i = 0, 1, \dots, n$$

In particular, the Bernoulli(p) variable can take on values 0 or 1, with respective probabilities

$$\mathfrak{p}(0) = 1 - p, \qquad \mathfrak{p}(1) = p.$$

Mass function

Example

Bernoulli: expectation, variance

PropositionLet $X \sim Binom(n, p)$. Then: $\mathbf{E}X = np$, and $\mathbf{Var} X = np(1-p)$

Proof

Poisson distribution

Poisson: mass function

The Poisson distribution is of central importance in Probability. Will later see relation to Binomial.

Definition

Fix a positive real number λ . The random variable X is *Poisson* distributed with parameter λ , in short $X \sim Poi(\lambda)$, if it is non-negative integer valued, and its mass function is

$$\mathfrak{p}(i) = \mathbf{P}(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}, \qquad i = 0, 1, 2, \dots$$

Poisson approximation of Binomial

Proposition

Fix $\lambda > 0$, and suppose that $Y_n \sim Binom(n, p)$ with p = p(n) in such a way that $n \cdot p \rightarrow \lambda$. Then the distribution of Y_n converges to $Poisson(\lambda)$:

$$\forall i \geq 0 \qquad \mathbf{P}(Y_n = i) \underset{n \to \infty}{\longrightarrow} e^{-\lambda} \frac{\lambda^i}{i!}.$$

Proof

Poisson: expectation, variance

Proposition For $X \sim Poi(\lambda)$, $\mathbf{E}X = \mathbf{Var} X = \lambda$.

Example

Examples

Geometric distribution

Geometric: mass function

Again independent trials, but now ask: when is the first success?

Definition

Suppose that independent trials, each succeeding with probability p, are repeated until the first success. The total number X of trials made has the *Geometric*(p) distribution (in short, $X \sim Geom(p)$).

Proposition

X can take on positive integers, with probabilities $p(i) = (1 - p)^{i-1} \cdot p$, i = 1, 2, ...

Geometric: mass function

Corollary

The Geometric random variable is (discrete) memoryless:

$$\mathbf{P}\{X \ge n+k \mid X > n\} = \mathbf{P}\{X \ge k\}$$

for every $k \ge 1$, $n \ge 0$.

Geometric: expectation, variance

Proposition For a Geometric(p) random variable X: $\mathbf{E}X = \frac{1}{p}$ $\mathbf{Var} X = \frac{1-p}{p^2}$

Example

Summary

- Bernoulli distribution: single trial
- Binomial distribution: many independent trials
- Poisson distribution: counting independent trials
- Geometric distribution: first success in independent trials