a. Proof (by mathematical induction): Let the property P(n) be the sentence

Any checkerboard with dimensions $2 \times 3n$ can be completely covered by L-shaped trominoes. $\leftarrow P(n)$

We will prove that P(n) is true for every integer $n \ge 1$.

Show that P(1) is true: The truth of P(1) is shown in the following diagram:

Show that for every integer $k \geq 1$, if P(k) is true then P(k+1) is true:

Let k be any integer with $k \geq 1$ and suppose that

Any checkerboard with dimensions $2 \times 3k$ can be completely covered by L-shaped trominoes. P(k) inductive hypothesis

We must show that

Any checkerboard with dimensions $2 \times 3(k+1)$ can be completely covered by L-shaped trominoes. $\leftarrow P(k+1)$

Observe that any checkerboard with dimensions $2 \times 3(k+1)$ can be split into two pieces: a checkerboard with dimensions $2 \times 3k$ and a checkerboard with dimensions 2×3 .

The inductive hypothesis insures that the $2 \times 3k$ checkerboard can be completely covered by L-shaped trominoes, and the illustration for the basis step shows that the checkerboard with dimensions 2×3 can also be completely covered by L-shaped trominoes. Thus the entire checkerboard with dimensions $2 \times 3(k+1)$ can be completely covered by L-shaped trominoes [as was to be shown].

Proof (by mathematical induction): Let the property P(n) be the sentence

$$7^n - 2^n$$
 is divisible by 5. $\leftarrow P(n)$

We will prove that P(n) is true for every integer $n \geq 0$.

Show that P(0) is true: P(0) is true because $7^0 - 2^0 = 1 - 1 = 0$ and 0 is divisible by 5 (since $0 = 5 \cdot 0$).

Show that for every integer $k \geq 0$, if P(k) is true then P(k+1) is true:

Let k be any integer with $k \geq 0$, and suppose

$$7^k - 2^k$$
 is divisible by 5. $\leftarrow P(k)$ inductive hypothesis

We must show that

$$7^{k+1} - 2^{k+1}$$
 is divisible by 5. $\leftarrow P(k+1)$

By definition of divisibility, the inductive hypothesis is equivalent to the statement $7^k - 2^k = 5r$ for some integer r. Then

$$\begin{array}{lll} 7^{k+1} - 2^{k+1} & = & 7 \cdot 7^k - 2 \cdot 2^k \\ & = & (5+2) \cdot 7^k - 2 \cdot 2^k \\ & = & 5 \cdot 7^k + 2 \cdot 7^k - 2 \cdot 2^k \\ & = & 5 \cdot 7^k + 2(7^k - 2^k) & \text{by algebra} \\ & = & 5 \cdot 7^k + 2 \cdot 5r & \text{by inductive hypothesis} \\ & = & 5(7^k + 2r) & \text{by algebra}. \end{array}$$

Now $7^k + 2r$ is an integer because products and sums of integers are integers. Therefore, by definition of divisibility, $7^{k+1} - 2^{k+1}$ is divisible by 5 [as was to be shown].

Proof (by strong mathematical induction): Let the property P(n) be the equation

$$f_n = 3 \cdot 2^n + 2 \cdot 5^n.$$

We will prove that P(n) is true for every integer $n \geq 0$.

Show that P(0) and P(1) are true: By definition of $f_0, f_1, f_2, ...$, we have that $f_0 = 5$ and $f_1 = 16$. Since $3 \cdot 2^0 + 2 \cdot 5^0 = 3 + 2 = 5$ and $3 \cdot 2^1 + 2 \cdot 5^1 = 6 + 10 = 16$, both P(0) and P(1) are true.

Show that for every integer $k \geq 1$, if P(i) is true for each integer i from 0 through k, then P(k+1) is true: Let k be any integer with $k \geq 1$, and suppose

$$f_i = 3 \cdot 2^i + 2 \cdot 5^i$$
 for every integer i with $0 \le i \le k$. \leftarrow inductive hypothesis

We must show that

$$f_{k+1} = 3 \cdot 2^{k+1} + 2 \cdot 5^{k+1}.$$

Now

$$\begin{array}{lll} f_{k+1} & = & 7f_k - 10f_{k-1} & \text{by definition of} \ f_0, f_1, f_2, \dots \\ & = & 7(3 \cdot 2^k + 2 \cdot 5^k) - 10(3 \cdot 2^{k-1} + 2 \cdot 5^{k-1}) & \text{by inductive hypothesis} \\ & = & 7(6 \cdot 2^{k-1} + 10 \cdot 5^{k-1}) - 10(3 \cdot 2^{k-1} + 2 \cdot 5^{k-1}) & \text{since} \ 2^k = 2 \cdot 2^{k-1} \ \text{and} \ 5^k = 5 \cdot 5^{k-1} \\ & = & (42 \cdot 2^{k-1} + 70 \cdot 5^{k-1}) - (30 \cdot 2^{k-1} + 20 \cdot 5^{k-1}) \\ & = & (42 - 30) \cdot 2^{k-1} + (70 - 20) \cdot 5^{k-1} \\ & = & 12 \cdot 2^{k-1} + 50 \cdot 5^{k-1} \\ & = & 3 \cdot 2^2 \cdot 2^{k-1} + 2 \cdot 5^2 \cdot 5^{k-1} \\ & = & 3 \cdot 2^{k+1} + 2 \cdot 5^{k+1} & \text{by algebra,} \end{array}$$

[as was to be shown].

[Since both the basis and the inductive steps have been proved, we conclude that P(n) is true for every integer $n \ge 0$.]

Task D

3. Proof (by strong mathematical induction): Let the property P(n) be the sentence

 c_n is even.

We will prove that P(n) is true for every integer $n \geq 0$.

Show that P(0), P(1), and P(2) are true: By definition of c_0, c_1, c_2, \ldots , we have that $c_0 = 2$, $c_1 = 2$, and $c_2 = 6$ and 2, 2, and 6 are all even. So P(0), P(1), and P(2) are all true.

Show that for every integer $k \geq 2$, if P(i) is true for each integer i from 0 through k, then P(k+1) is true: Let k be any integer with $k \geq 2$, and suppose

 c_i is even for every integer i with $0 \le i \le k$ \leftarrow inductive hypothesis

We must show that

 c_{k+1} is even.

Now by definition of $c_0, c_1, c_2, \ldots, c_{k+1} = 3c_{k-2}$. Since $k \geq 2$, we have that $0 \leq k - 2 \leq k$, and so, by inductive hypothesis, c_{k-2} is even. Now the product of an even integer with any integer is even [properties 1 and 4 of Example 4.2.3], and hence $3c_{k-2}$, which equals c_{k+1} , is also even [as was to be shown].

[Since both the basis and the inductive steps have been proved, we conclude that P(n) is true for every integer $n \ge 0$.]

18.
$$9^1 = 9$$
, $9^2 = 81$, $9^3 = 729$, $9^4 = 6561$, and $9^5 = 59049$.

Conjecture: For every integer $n \geq 0$, the units digit of 9^n is 1 if n is even and is 9 if n is odd.

Proof (by strong mathematical induction): Let the property P(n) be the sentence

The units digit of 9^n is 1 if n is even and is 9 if n is odd.

We will prove that P(n) is true for every integer $n \geq 0$.

Show that P(0) and P(1) are true: P(0) is true because 0 is even and the units digit of $9^0 = 1$. P(1) is true because 1 is odd and the units digit of $9^1 = 9$.

Show that for every integer $k \geq 1$, if P(i) is true for each integer i from 0 through k, then P(k+1) is true: Let k be any integer with $k \geq 1$, and suppose:

For every integer i from 0 through k,

the units digit of
$$9^i = \begin{cases} 1 \text{ if } i \text{ is even} \\ 9 \text{ if } i \text{ is odd} \end{cases}$$
 \leftarrow inductive hypothesis

We must show that

the units digit of
$$9^{k+1} = \begin{cases} 1 \text{ if } (k+1) \text{ is even} \\ 9 \text{ if } (k+1) \text{ is odd} \end{cases} \leftarrow P(k+1)$$

Case 1(k+1iseven): In this case k is odd, and so, by inductive hypothesis, the units digit of 9^k is 9. This implies that there is an integer a so that $9^k = 10a + 9$, and hence

$$9^{k+1} = 9^1 \cdot 9^k$$
 by algebra (a law of exponents)
 $= 9(10a + 9)$ by substitution
 $= 90a + 81$
 $= 90a + 80 + 1$
 $= 10(9a + 8) + 1$ by algebra.

Because 9a + 8 is an integer, it follows that the units digit of 9^{k+1} is 1.

Case 2 (k+1 is odd): In this case k is even, and so, by inductive hypothesis, the units digit of 9^{k-1} is 1. This implies that there is an integer a so that $9^k = 10a + 1$, and hence

$$9^{k+1}$$
 = $9^1 \cdot 9^k$ by algebra (a law of exponents)
 = $9(10a + 1)$ by substitution
 = $90a + 9$
 = $10(9a) + 9$ by algebra.

Because 9a is an integer, it follows that the units digit of 9^{k+1} is 9.

Hence in both cases the units digit of 9^{k+1} is as specified in P(k+1) [as was to be shown].