Tutorial 2 in Week 3

- 1) Discuss your submissions for Homework 1 and where you made mistakes or could improve. See the course web pages for solution notes.
- 2) Work together as a group on each of the following tasks.

Task A

Consider a 2 x3 and 2 X 6 checkerboard. Draw a covering of the boards by L-shaped trominoes such as this one covering 3 squares.

Now work together using mathematical induction to prove that for each integer $n \ge 1$, any checkerboard with dimensions $2 \times 3n$ can be completely covered with L-shaped trominoes.

Task B

Use mathematical induction to prove that for any integer $n \ge 0$, $7^n - 2^n$ is divisible by 5.

Task C

This is Ex 5.4 Q6 below from the textbook: Is this strong induction? Try to prove as a group.

Suppose that $f_0, f_1, f_2, ...$ is a sequence defined as follows:

 $f_0 = 5, f_1 = 16, f_k = 7f_{k-1} - 10 f_{k-2}$ for every integer $k \ge 2$.

Prove by mathematical induction that $f_n = 3 \cdot 2^n + 2 \cdot 5^n$ for each integer

 $n\geq 0$.

Task D

Suppose that c_0, c_1, c_2, \ldots is a sequence defined as follows:

 $c_0 = 2$, $c_1 = 2$, $c_2 = 6$, $c_k = 3c_{k-3}$ for every integer $k \ge 3$.

Prove that c_n is even for each integer $n \ge 0$.

Task E

Compute 9^0 , 9^1 , 9^2 , 9^3 , 9^4 , and 9^5 . Make a conjecture about the units digit of 9^n where *n* is a positive integer. Use strong mathematical induction to prove your conjecture.