Tutorial 2 in Week 3

1) Discuss your submissions for Homework 1 and where you made mistakes or could improve. See the course web pages for solution notes.
2) Work together as a group on each of the following tasks.

Task A

Consider a 2×3 and 2×6 checkerboard. Draw a covering of the boards by Lshaped trominoes such as this one covering 3 squares.

Now work together using mathematical induction to prove that for each integer $n \geq 1$, any checkerboard with dimensions $2 \times 3 n$ can be completely covered with L-shaped trominoes.

Task B

Use mathematical induction to prove that for any integer $n \geq 0,7^{n}-2^{n}$ is divisible by 5 .

Task C

This is Ex 5.4 Q6 below from the textbook: Is this strong induction? Try to prove as a group.

Suppose that $f_{0}, f_{1}, f_{2}, \ldots$ is a sequence defined as follows:
$f_{0}=5, f_{1}=16, f_{k}=7 f_{k-1}-10 f_{k-2}$ for every integer $k \geq 2$.
Prove by mathematical induction that $f_{n}=3 \cdot 2^{n}+2 \cdot 5^{n}$ for each integer $n \geq 0$.

Task D

Suppose that $c_{0}, c_{1}, c_{2}, \ldots$ is a sequence defined as follows:

$$
\begin{aligned}
& c_{0}=2, c_{1}=2, c_{2}=6, \\
& c_{k}=3 c_{k-3} \quad \text { for every integer } k \geq 3 .
\end{aligned}
$$

Prove that c_{n} is even for each integer $n \geq 0$.

Task E

Compute $9^{0}, 9^{1}, 9^{2}, 9^{3}, 9^{4}$, and 9^{5}. Make a conjecture about the units digit of 9^{n} where n is a positive integer. Use strong mathematical induction to prove your conjecture.

