Task 1: go over the homework as last week in smaller groups as necessary.
Task 2: Try these questions
Q1
Find the mistake in the following "proof" that for all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
"Proof: Suppose A, B, and C are any sets such that $A \subseteq B$ and $B \subseteq C$. Since $A \subseteq B$, there is an element x such that $x \in A$ and $x \in B$, and since $B \subseteq C$, there is an element x such that $x \in B$ and $x \in C$. Hence there is an element x such that $x \in A$ and $x \in C$ and so $A \subseteq C$."

Find the mistake in the following "proof."
"Theorem:" For all sets A and $B, A^{c} \cup B^{c} \subseteq$ $(A \cup B)^{c}$.
"Proof: Suppose A and B are any sets, and $x \in A^{c} \cup B^{c}$. Then $x \in A^{c}$ or $x \in B^{c}$ by definition of union. It follows that $x \notin A$ or $x \notin B$ by definition of complement, and so $x \notin A \cup B$ by definition of union. Thus $x \in(A \cup B)^{c}$ by definition of complement, and hence $A^{c} \cup B^{c} \subseteq(A \cup B)^{c}$."

Q3

Recall that for sets A and $B,|A|=|B|$ if there is a bijection $f: A \rightarrow B$, a function f that is both injective (one-to-one) and surjective (onto). Let $E=\{0,2,4, \ldots\}$ be the set of non-negative even integers.
(a) Give an example of a function $g: E \rightarrow E$ that is injective but not surjective.
(b) Prove that $|\mathbb{Z}|=|E|$ by defining an explicit bijection.

Q4
(a) Determine whether the function $f:(\mathbb{Z} \times \mathbb{Z}) \rightarrow \mathbb{Z}$ is surjective if
i. $f(m, n)=m^{2}+n^{2}$
iii. $f(m, n)=|n|$
ii. $f(m, n)=m$
iv. $f(m, n)=m-n$
(b) Assume functions $g: A \rightarrow B$ and $f: B \rightarrow C$. Prove or disprove the following statements.
i. If $f \circ g$ and g are injective then f is injective.
ii. If $f \circ g$ and f are injective then g is injective.

Q5
Simplify using an algebraic argument.

$$
(A-(A \cap B)) \cap(B-(A \cap B))
$$

