DMP Tutorial 4 Week 5
Task 1 Share and discuss homework

Task 2 For the task and the next you will need a whiteboard,
pencil and paper, or other drawing tool.

Define relations R and S on R as follows:

R={(x,_}!)ERXR\x2+y2=4} and
S={x,y) ERXR|x =y}

Graph R, §, RU S, and RN § in the Cartesian
plane.

Task 3 Draw a directed graph of the following relation

LetA =1{2,3,4,5,6,7, 8} and define a relation T
on A as follows: Forevery x, y € A,

xTy < 3|x—y).

Discuss what properties of the relation you can see on your graph.

Task 4 The following text defines a relation P.

Recall that a prime number is an integer that 1s
oreater than 1 and has no positive integer divi-
sors other than 1 and itself. (In particular, 1 1s not
prime.) A relation P is defined on Z as follows:
For every m, n € Z, m P n <3 a prime number p
such that p |m and p| n.

Is this relation reflexive? symmetric? transitive? None of these?
Explain your answer.



Task 5

Use the RSA cipher from Examples 8.4.9 and 8.4.10 to encrypt this

word:
HELLO

You can find relevant pages from the textbook at the end of this
document.

Now decrypt this message:

13 20 20 09

Task 6

Use Theorem 8.4.5 to prove that for all integers a,
b, and c, if ged(a, b) = 1 and a | c and b | c, then
ab | c.

Task 7

Fermat’s Little Theorem states that if p is a prime number and a
and p are relatively prime, then a?~1 =1 (mod p). Verify that this

theorem gives correct results for the following cases.

a)a=15andp =7 b)a=8andp =11
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FELICERR:Y  Finding an Inverse Modulo n

a. Find an inverse for 43 modulo 660. That is, find an integer s such that 435 = 1 (mod 660).

b. Find a positive inverse for 3 modulo 40. That is, find a positive integer s such that
35 = 1 (mod 40).

Solution
a. By Example 8.4.7,
307-43 —20-660 = 1.
Adding 20-660 to both sides gives that
307-43 = 1+ 20-660.
Thus, by definition of congruence modulo 660,

307:43 = 1 (mod 660),

so 307 is an inverse for 43 modulo 660,

b. Use the technique of Example 8.4.7 to find a linear combination of 3 and 40 that
equals 1.

Step 1: Divide 40 by 3 to obtain 40 = 313 4 1. This implies that 1 = 40—3-13.
Step 2: Divide 3 by 1 to obtain 3 = 31+ 0. This implies that ged(3, 40) = 1.

Step 3: Use the result of step 1 to write
3-(—13) = 1+ (—1M40.

This result implies that —13 is an inverse for 3 modulo 40. In other words, 3-(—13) =
1 (mod 40). To find a positive inverse, compute 40 — 13. The result is 27, and

27 = —13 (mod 40)
because 27 — (—13) = 40. So, by Theorem 8.4.3(3),
3:27=3-(—13) = 1 (mod 40),

and thus by the transitive property of congruence modulo n, 27 is a positive integer that is
an inverse for 3 modulo 40, B

RSA Cryptography

At this point we have developed enough number theory to explain how to encrypt and de-
crypt messages using the RSA cipher. The effectiveness of the system is based on the fact
that although modern computer algorithms make it quite easy to find two distinct large in-
tegers p and g—say on the order of several hundred digits each—that are virtually certain
to be prime, even the fastest computers are not currently able to factor their product, an
integer with approximately twice that many digits. In order to encrypt a message using the
RSA cipher, a person needs to know the value of pg and of another integer e, both of which
are made publicly available. But only a person who knows the individual values of p and g
can decrypt an encrypted message.

We first give an example to show how the cipher works and then discuss some of
the theory to explain why it works. The example is unrealistic in the sense that because
p and g are so small, it would be easy to figure out what they are just by knowing
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their product. But working with small numbers conveys the idea of the system, while
keeping the computations in a range that can be performed with a hand calculator.

Suppose Alice decides to set up an RSA cipher. She chooses two prime numbers—say,
p =35 and g = |1—and computes pg = 55. She then chooses a positive integer e that is
relatively prime to (p— 1)(g — 1). In this case, (p— 1)}g— 1) = 4-10 = 40, so she may
take e = 3 because 3 is relatively prime to 4(). (In practice, taking e to be small could
compromise the secrecy of the cipher, so she would take a larger number than 3. However,
the mathematics of the cipher works as well for 3 as for a larger number, and the smaller
number makes for easier calculations.)

The number pair (pg, ) is Alice’s public key, which she may distribute widely. Because
the RSA cipher works only on numbers, Alice also informs people how she will interpret
the numbers in the messages they send her. Let us suppose that she encodes letters of the
alphabet in a similar way as was done for the Caesar cipher:

A=0LB=02,C=03...,Z=26.

Let us also assume that the messages Alice receives consist of blocks, each of which, for
simplicity, is taken to be a single, numerically encoded letter of the alphabet.

Someone who wants to send Alice a message breaks the message into blocks, each con-
sisting of a single letter, and finds the numeric equivalent for each block. The plaintext, M,
in a block is converted into ciphertext, C, according to the following formula:

Cc= M modpq, 8.4.5

Note that because (pg, €) is the public key, anyone who has it and knows modular arithme-
tic can encrypt a message to send to Alice.

FEIEE Y  Encrypting a Message Using RSA Cryptography

Bob wants to send Alice the message HI. What is the ciphertext for his message?

Solution Bob will send his message in two blocks, one for the H and another for the 1.
Because H is the eighth letter in the alphabet, it is encoded as 08, or 8. The corresponding
ciphertext is computed using formula 8.4.5 as follows:
C = 8 mod 55
= 512 mod 55
=17.
Because I is the ninth letter in the alphabet, it is encoded as 09, or 9. The corresponding
ciphertext is
C =9 mod 55
= 729 mod 55
= 14.
Accordingly, Bob sends Alice the message: 17 14. u

To decrypt the message, the decryption key must be computed. It is a number d that is a
positive inverse to e modulo (p — 1 )(g — 1). The plaintext M is obtained from the ciphertext
C by the formula

M = € mod pq, where the number pair (pg, d) is Alice’s private key. 8.4.6
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Note that because M + kpg = M (mod pg), M must be taken to be less than pg, as in
the above example, in order for the decryption to be guaranteed to produce the original
message. But because p and ¢ are normally taken to be so large, this requirement does not
cause problems. Long messages are broken into blocks of symbols to meet the restriction
and several symbols are included in each block to prevent decryption based on knowledge
of letter frequencies.

SN RROY  Decrypting a Message Using RSA Cryptography

Imagine that Alice has hired you to help her decrypt messages and has shared with you the
values of p and g. Compute Alice’s private key (pg. d) and use the formula M = C? mod pq
to decrypt the following ciphertext for her: 17 14.

Solution Because p=5Sandg = 11,{p— 1)(g — 1) = 40, the decryption key d is a posi-
tive inverse for 3 modulo 40. Knowing that you would need this number, we computed it
in Example 8.4.8(b) and found it to be 27. Thus to decrypt the ciphertext 17, you need to
compute

M = 17" mod pg = 17%" mod 55.
To do so, note that
27 =16+8+2+1.

Nexj, find the residues obtained when 17 is raised to successively higher powers of 2, up
ta2” = 16:

17 mod 55 = 17 mod 55
172 mod 55 = 17° mod 55 14

17* mod 55 = (17°)" mod 55 = 14* mod 55 = 31
17% mod 55 = (17*Y mod 55 = 31% mod 55 = 26
17" mod 55 = (17%) mod 55 = 26 mod 55 = 16

17

I

Then use the fact that
1727 = (168421 _ 191698 192, 17]
to write

17%7 mod 55 = (17'%17%17%- 17) mod 55

= [(17° mod 55)(17° mod 55)(17% mod 55)(17 mod 55)] (mod 55)
by Corollary 8.4.4

= (16:26-14-17) (mod 55)

= 99008 (mod 55)

= § (mod 55).
Hence 17°7 mod 55 = 8, and thus the plaintext of the first part of Bob’s message is 8, or 08.
In the last step, you find the letter corresponding to 08, which is H. In exercises 14 and 15

at the end of this section, you are asked to show that when you decrypt 14, the result is 9,
which corresponds to the letter I, so you can tell Alice that Bob’s message is HI. |

Figure 8.4.1 illustrates the process of sending and receiving a message using RSA
cryptography.
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Bob creates a
plaintext block M.

Bob uses Alice's
public key to
encrypt M:

C = M mod pq.

Alice reads Bob's
plaintext block M.

Bob sends encrypled
block C to Alice.

Alice uses her
private key to
decrypt C:

M = C mod py.
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FIGURE 8.4.1 Using RSA cryptography

Euclid’s Lemma

Another consequence of Theorem 8.4.5 is known as Euclid’s lemima. It is the crucial fact
behind the unique factorization theorem for the integers and is also of great importance in
many other parts of number theory.

Theorem 8.4.8 Euclid’s Lemma

For all integers a, b, and ¢, if ged(a, ¢) = 1 and @ | be, then a | b.

Proof: Suppose a, b, and ¢ are integers, ged(a, ¢) = 1, and a | be. [We must show that
a|b.] By Theorem 8.4.5, there exist integers s and f so that

as+et=1.

Multiply both sides of this equation by b to obtain

bas + bet = b, 847
Since a|be, by definition of divisibility there exists an integer k such that
be = ak. 848

Substituting (8.4.8) into (8.4.7), rewriting. and factoring out an @ gives that
b = bas + (ak)t = a(bs + kt).

Let r = bs+kt. Then r is an integer (because b, 5, k, and ¢ are all integers), and
b = ar. Thus a|b by definition of divisibility.

The unique factorization theorem for the integers states that any integer greater than |
has a unique representation as a product of prime numbers, except possibly for the order in
which the numbers are written. The hint for exercise 13 of Section 5.4 outlined a proof of the
existence part of the proof, and the unigueness of the representation follows quickly from Eu-
clid’s lemma. In exercise 41 at the end of this section, we outline a proof for you to complete.

Another application of Euclid’s lemma is a cancellation theorem for congruence modulo
n. This theorem allows us—under certain circumstances—to divide out a common factor
in a congruence relation,

Theorem 8.4.9 Cancellation Theorem for Modular Congruence

For all integers a, b, ¢, and n with n = 1, if ged(e, n) = 1 and ac = be (mod n), then
a = b (mod n).

{continued on page 540)
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