Discrete Mathematics and Probability

Tutorial 5 - solutions
(1) Discuss your last tutorial/homework/class test with your peers.
(2) A telegraph sends out three symbols on the communication line. Represent the following events in a single Venn diagram:

$$
\begin{aligned}
& A_{1}=\{\text { only the first symbol is received }\} \\
& A_{2}=\{\text { at least one symbol is received }\} \\
& A_{3}=\{\text { exactly two symbols are received }\} \\
& A_{4}=\{\text { less than two symbols are received }\} \\
& A_{5}=\{\text { exactly one symbol is received }\}
\end{aligned}
$$

Write 0 and 1 for whether a symbol is received. The sample space then consists of strings of three bits, or, interpreting them in binary notation, of the numbers $\Omega=\{0,1,2,3,4,5,6,7\}$.

000	001	010	011	100	101	110	111
0	1	2	3	4	5	6	7

The events become:

$$
\begin{aligned}
& A_{1}=\{4\} \\
& A_{2}=\{1,2,3,4,5,6,7\} \\
& A_{3}=\{3,5,6\} \\
& A_{4}=\{0,1,2,4\} \\
& A_{5}=\{1,2,4\}
\end{aligned}
$$

In a Venn diagram:

(3) Five cards are numbered as 1,2,3,4,5. Three cards are randomly selected from the set and are lined up next to each other to form 3 digit number x. Find the probabilities of the following events:
(a) $A=\{x=123\}$
(b) $B=\{x$ does not contain the digit 4$\}$
(c) $C=\{x$ is even $\}$
(d) $D=\{x$ contains at least one of the digits 1,2$\}$

The number of possible permutations of 3 elements from a set of 5 is $N=P_{3,5}=5 \cdot 4 \cdot 3=60$.
(a) Only the permutation 123 is selected, so the event A has cardinality 1 , and thus probability $P(A)=\frac{1}{60}$.
(b) To not contain the digit 4 , we can choose only among digits $1,2,3,5$, for which there are $P_{3,4}=4 \cdot 3 \cdot 2=24$ possibilities, so $P(B)=\frac{24}{60}=\frac{2}{5}$.
(c) For x to be even, its last digit must be 2 or 4 . In each of those cases, the first two digits can have one of 4 values ($1,3,4,5$ in the first case, and $1,2,3,5$ in the second case). Therefore event C has cardinality $2 \cdot P_{2,4}=2 \cdot 4 \cdot 3=24$, and $P(C)=\frac{24}{60}=\frac{2}{5}$.
(d) Consider the complement $D^{c}=\{x$ does not contain the digits 1,2$\}$. Then every digit of x can be one of three values $3,4,5$, and so D^{c} has cardinality $P_{3,3}=3!=6$, and so $P\left(D^{c}\right)=\frac{6}{60}=\frac{1}{10}$, and therefore $P(D)=1-P\left(D^{c}\right)=1-\frac{1}{10}=\frac{9}{10}$.
(4) In how many ways can you order the elements of the set $\{1,2, \ldots, 2 n\}$ so that every even number is at an even position?

There are n even numbers in the set. There are also n even positions in a sequence of $2 n$ numbers. The number of ways to order n numbers in n positions is $P_{n, n}=n!$. Clearly, there are also n odd numbers in the set and they can also be ordered in n odd positions in n ! possible ways. So for each ordering of even numbers we have n ! orderings of odd numbers. Therefore the total number of orderings is $n!\cdot n!=(n!)^{2}$.
(5) A white ball is thrown into an urn containing n balls. Next, a ball is drawn at random from the urn. What is the probability that the selected ball is white? The urn may initially contain $0,1,2, \ldots$ or n white balls, and it is equally probable that the urn is in one of those $n+1$ initial states at the start of the experiment.

Let $A=\{$ white ball was drawn\}, and denote the following events expressing the initial state of the urn:

$$
\begin{aligned}
B_{1} & =\{\text { the urn contains exactly } 0 \text { white balls }\} \\
B_{2} & =\{\text { the urn contains exactly } 1 \text { white balls }\} \\
B_{3} & =\{\text { the urn contains exactly } 2 \text { white balls }\} \\
\ldots & \\
B_{n+1} & =\{\text { the urn contains exactly } n \text { white balls }\}
\end{aligned}
$$

Events B_{i} are pairwise mutually exclusive and exactly one of them must be true. Therefore $\sum_{i=1}^{n+1} P\left(B_{i}\right)=1$. Since there are $n+1$ events, each of which is equally probably, we have

$$
P\left(B_{i}\right)=\frac{1}{n+1}
$$

The conditional probability of event A given a particular initial state of the urn is

$$
P\left(A \mid B_{i}\right)=\frac{i}{n+1}: 1 \leq i \leq n+1
$$

To see this, suppose that the initial state of the urn is B_{i}, that is, the urn contains $i-1$ white balls out of n balls. Then a white ball is thrown into the urn, after which it will contain i white balls out of $n+1$ balls. Now the probability to draw a white ball is $\frac{i}{n+1}$, which is exactly $P\left(A \mid B_{i}\right)$. Finally, using the law of total probability, we derive:

$$
\begin{aligned}
P(A) & =\sum_{i=1}^{n+1} P\left(A \mid B_{i}\right) P\left(B_{i}\right)=\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{i}{n+1} \\
& =\frac{1+2+\cdots+(n+1)}{(n+1)^{2}}=\frac{(1+(n+1))(n+1)}{2(n+1)^{2}}=\frac{n+2}{2(n+1)}
\end{aligned}
$$

