Discrete Mathematics and Probability
Tutorial 5 – solutions

(1) Discuss your last tutorial/homework/class test with your peers.

(2) A telegraph sends out three symbols on the communication line. Represent the following events in a single Venn diagram:

\[A_1 = \{ \text{only the first symbol is received} \} \]
\[A_2 = \{ \text{at least one symbol is received} \} \]
\[A_3 = \{ \text{exactly two symbols are received} \} \]
\[A_4 = \{ \text{less than two symbols are received} \} \]
\[A_5 = \{ \text{exactly one symbol is received} \} \]

Write 0 and 1 for whether a symbol is received. The sample space then consists of strings of three bits, or, interpreting them in binary notation, of the numbers \(\Omega = \{0, 1, 2, 3, 4, 5, 6, 7\} \).

\[
\begin{array}{cccccccc}
000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

The events become:

\[A_1 = \{ 4 \} \]
\[A_2 = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
\[A_3 = \{ 3, 5, 6 \} \]
\[A_4 = \{ 0, 1, 2, 4 \} \]
\[A_5 = \{ 1, 2, 4 \} \]

In a Venn diagram:

(3) Five cards are numbered as 1,2,3,4,5. Three cards are randomly selected from the set and are lined up next to each other to form 3 digit number \(x \). Find the probabilities of the following events:

(a) \(A = \{ x = 123 \} \)
(b) \(B = \{ x \text{ does not contain the digit 4} \} \)
(c) \(C = \{ x \text{ is even} \} \)
(d) \(D = \{ x \text{ contains at least one of the digits 1,2} \} \)

The number of possible permutations of 3 elements from a set of 5 is \(N = P_{3,5} = 5 \cdot 4 \cdot 3 = 60 \).
(a) Only the permutation 123 is selected, so the event \(A \) has cardinality 1, and thus probability \(P(A) = \frac{1}{60} \).

(b) To not contain the digit 4, we can choose only among digits 1,2,3,5, for which there are \(P_{3,4} = 4 \cdot 3 \cdot 2 = 24 \) possibilities, so \(P(B) = \frac{24}{60} = \frac{2}{5} \).

(c) For \(x \) to be even, its last digit must be 2 or 4. In each of those cases, the first two digits can have one of 4 values (1,3,4,5 in the first case, and 1,2,3,5 in the second case). Therefore event \(C \) has cardinality \(2 \cdot P_{2,4} = 2 \cdot 4 \cdot 3 = 24 \), and \(P(C) = \frac{24}{60} = \frac{2}{5} \).

(d) Consider the complement \(D^c = \{x \text{ does not contain the digits 1,2}\} \).

Then every digit of \(x \) can be one of three values 3,4,5, and so \(D^c \) has cardinality \(P_{3,3} = 3! = 6 \), and so \(P(D^c) = \frac{6}{60} = \frac{1}{10} \), and therefore \(P(D) = 1 - P(D^c) = 1 - \frac{1}{10} = \frac{9}{10} \).

(4) In how many ways can you order the elements of the set \(\{1,2,\ldots,2n\} \) so that every even number is at an even position?

There are \(n \) even numbers in the set. There are also \(n \) even positions in a sequence of \(2n \) numbers. The number of ways to order \(n \) numbers in \(n \) positions is \(P_{n,n} = n! \). Clearly, there are also \(n \) odd numbers in the set and they can also be ordered in \(n \) odd positions in \(n! \) possible ways. So for each ordering of even numbers we have \(n! \cdot n! = (n!)^2 \).

(5) A white ball is thrown into an urn containing \(n \) balls. Next, a ball is drawn at random from the urn. What is the probability that the selected ball is white? The urn may initially contain 0,1,2,\ldots or \(n \) white balls, and it is equally probable that the urn is in one of those \(n+1 \) initial states at the start of the experiment.

Let \(A = \{\text{white ball was drawn}\} \), and denote the following events expressing the initial state of the urn:

\[
B_1 = \{\text{the urn contains exactly 0 white balls}\}
\]

\[
B_2 = \{\text{the urn contains exactly 1 white balls}\}
\]

\[
B_3 = \{\text{the urn contains exactly 2 white balls}\}
\]

\[
\ldots
\]

\[
B_{n+1} = \{\text{the urn contains exactly } n \text{ white balls}\}
\]

Events \(B_i \) are pairwise mutually exclusive and exactly one of them must be true. Therefore \(\sum_{i=1}^{n+1} P(B_i) = 1 \). Since there are \(n+1 \) events, each of which is equally probable, we have

\[
P(B_i) = \frac{1}{n+1}.
\]

The conditional probability of event \(A \) given a particular initial state of the urn is

\[
P(A|B_i) = \frac{i}{n+1} : 1 \leq i \leq n+1.
\]
To see this, suppose that the initial state of the urn is B_i, that is, the urn contains $i - 1$ white balls out of n balls. Then a white ball is thrown into the urn, after which it will contain i white balls out of $n + 1$ balls. Now the probability to draw a white ball is $\frac{i}{n+1}$, which is exactly $P(A|B_i)$. Finally, using the law of total probability, we derive:

$$P(A) = \sum_{i=1}^{n+1} P(A|B_i)P(B_i) = \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{i}{n+1}$$

$$= \frac{1 + 2 + \cdots + (n + 1)}{(n+1)^2} = \frac{(1 + (n + 1))(n + 1)}{2(n+1)^2} = \frac{n + 2}{2(n+1)}.$$