(1) Discuss your last tutorial/homework/class test with your peers.

(2) A telegraph sends out three symbols on the communication line. Represent the following events in a single Venn diagram:

\[A_1 = \{ \text{only the first symbol is received} \} \]
\[A_2 = \{ \text{at least one symbol is received} \} \]
\[A_3 = \{ \text{exactly two symbols are received} \} \]
\[A_4 = \{ \text{less than two symbols are received} \} \]
\[A_5 = \{ \text{exactly one symbol is received} \} \]

(3) Five cards are numbered as 1,2,3,4,5. Three cards are randomly selected from the set and are lined up next to each other to form 3 digit number \(x \).
Find the probabilities of the following events:

(a) \(A = \{ x = 123 \} \)
(b) \(B = \{ x \text{ does not contain the digit } 4 \} \)
(c) \(C = \{ x \text{ is even} \} \)
(d) \(D = \{ x \text{ contains at least one of the digits } 1,2 \} \)

(4) In how many ways can you order the elements of the set \(\{1,2,\ldots,2n\} \) so that every even number is at an even position?

(5) A white ball is thrown into an urn containing \(n \) balls. Next, a ball is drawn at random from the urn. What is the probability that the selected ball is white? The urn may initially contain 0, 1, 2, \ldots or \(n \) white balls, and it is equally probable that the urn is in one of those \(n+1 \) initial states at the start of the experiment.