Discrete Mathematics and Probability

Tutorial 6 - solutions
(1) Discuss your last tutorial/homework/class test with your peers.
(2) A discrete random variable X has the following probability mass function:

$$
\begin{array}{c|cccc}
x_{i} & 1 & 3 & 4 & 6 \\
\hline p_{i} & 0.25 & 0.3 & 0.3 & 0.15
\end{array}
$$

Compute the cumulative distribution function, and the probability $P(2 \leq$ $X \leq 5)$. Plot the probability mass function and the cumulative distribution function.

The CDF of X is:

$$
F(x)= \begin{cases}0 & \text { if } x<1 \\ 0.25 & \text { if } 1 \leq x<3 \\ 0.55 & \text { if } 3 \leq x<4 \\ 0.85 & \text { if } 4 \leq x<6 \\ 1 & \text { if } 6 \leq x\end{cases}
$$

Plots of the PMF and CDF of X look like:

The probability $P(2 \leq X \leq 5)$ is

$$
P(2 \leq X \leq 5)=P((X=3) \cup(X=4))=F(5)-F(2)=0.85-0.25=0.6
$$

(3) Alice and Bob play take turns throwing a six-sided die. The first one to throw a 5 or 6 wins. Alice starts. What are the probability of the events $A=\{$ Alice wins $\}$ and $B=\{$ Bob wins $\}$?
(You may use the fact that $\frac{1}{1-x^{2}}=1+x^{2}+x^{4}+x^{6}+x^{8}+\cdots$.)
Write

$$
\begin{aligned}
& A_{k}=\{\text { on the } k \text { th throw Alice gets a } 5 \text { or } 6\} \\
& B_{k}=\{\text { on the } k \text { th throw Bob gets a } 5 \text { or } 6\}
\end{aligned}
$$

The probability that on any throw a player gets a 5 or 6 is $p=\frac{2}{6}=\frac{1}{3}$. Therefore $P\left(A_{k}\right)=P\left(B_{k}\right)=p=\frac{1}{3}$, and $P\left(A_{k}^{c}\right)=P\left(B_{k}^{c}\right)=q=1-p=\frac{2}{3}$. Alice wins in the event

$$
A=A_{1} \cup\left(A_{1}^{c} \cap B_{1}^{c} \cap A_{2}\right) \cup\left(A_{1}^{c} \cap B_{1}^{c} \cap A_{2}^{c} \cap B_{2}^{c} \cap A_{3}\right) \cup \cdots
$$

Since the events A_{k} and B_{k} are independent and the events A_{1} and $A_{1}^{c} \cap$ $B_{1}^{c} \cap A_{2}$ and $A_{1}^{c} \cap B_{1}^{c} \cap A_{2}^{c} \cap B_{2}^{c} \cap A_{3}$ are pairwise mutually exclusive:

$$
\begin{aligned}
P(A) & =p+q q p+q q q q p+\cdots=p\left(1+q^{2}+q^{4}+\cdots\right) \\
& =\frac{p}{1-q^{2}}=0.6
\end{aligned}
$$

Bob wins in the event

$$
B=\left(A_{1}^{c} \cap B_{1}\right) \cup\left(A_{1}^{c} \cap B_{1}^{c} \cap A_{2}^{c} \cap B_{2}\right) \cup \cdots
$$

Similarly

$$
\begin{aligned}
P(B) & =q p+q q q p+q q q q q p+\cdots=p q\left(1+q^{2}+q^{4}+\cdots\right) \\
& =\frac{p q}{1-q^{2}}=0.4
\end{aligned}
$$

(4) An exam has 4 questions. Each question has 4 answers, of which exactly 1 is correct. The exam is given to 256 students. Each student answers each question randomly. Describe the distribution of the number of correct answers, i.e. how many exams have 0 correct answers, how many exams have 1 correct answer, etc.

The guessing of correct answers by a single student can be seen as a binomial experiment composed of $n=4$ trials (4 questions). Since a student is randomly guessing each answer, the 4 trials are independent and the probability of success (i.e. guessing the correct answer) in each trial is $1 / 4$.

Let X be the number of correct answers guessed by a single student. This quantity can be modelled as a random variable whose values are distributed according to a binomial distribution $X \sim \operatorname{Bin}(x ; n=4, p=1 / 4)$. Therefore the probability that $X=x$ for $x=0,1,2,3,4$ is

$$
P(X=x)=\binom{4}{x}(1 / 4)^{x}(3 / 4)^{4-x}
$$

The expected number of correctly guessed answers is $256 \cdot P(X=x)$, and they are distributed over the values of x as follows:

$$
256 \cdot P(X=x)= \begin{cases}81 & x=0 \\ 108 & x=1 \\ 54 & x=2 \\ 12 & x=3 \\ 1 & x=4\end{cases}
$$

