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1. We prove the equivalent statement that k2 + k is even for each integer k.

In fact k2 + k can be written as k(k+1), and either k or k+1 must be even. When multiplying an
even number with an integer, the result is still even.

2. The proof is by strong induction. Let P(n) be the statement “en = 3 fn”.

Base cases: e0 = 1 = 30 = 3 f0 . So P(0) holds. Moreover, e1 = 3 = 31 = 3 f1 . So P(1) holds too.

Induction step: Assuming, for some k ≥ 1, that P( j) holds for all j with 0 ≤ j ≤ k, we must
obtain P(k+1). So we assume that e j = 3 f j for all j with 0 ≤ j ≤ k. Below we use this assumption
for the two values j = k and j = k−1.

Now ek+1 = ek · ek−1 = 3 fk ·3 fk−1 = 3 fk+ fk−1 = 3 fk+1 . This is P(k+1).

Thus, by strong induction, P(n) holds for all n ≥ 0.

3. To prove that (A−B)∪ (B−C)∪ (C−A) = (B−A)∪ (C−B)∪ (A−C) by the element method,
first suppose that x ∈ (A−B)∪ (B−C)∪ (C−A). There are three cases to consider. For reasons
of symmetry, I need to consider only the case that x ∈ A−B. The other two cases, that x ∈ B−C
or x ∈ C−A, necessary proceed in the same way — one can see that this must be so by cyclicly
rotating the roles of A, B and C.

Assuming x ∈ A−B, we obtain that x ∈ A and x /∈ B. Now we make a further case distinction,
depending on whether x ∈C.

In case x ∈C, given that x /∈ B, we have x ∈C−B, and thus x ∈ (B−A)∪ (C−B)∪ (A−C).

In case x /∈C, given that x ∈ A, we obtain x ∈ A−C, and thus x ∈ (B−A)∪ (C−B)∪ (A−C).

So in all cases x ∈ (B−A)∪ (C−B)∪ (A−C).
It follows that (A−B)∪ (B−C)∪ (C−A)⊆ (B−A)∪ (C−B)∪ (A−C)

The other direction, that (B−A)∪ (C −B)∪ (A−C) ⊆ (A−B)∪ (B−C)∪ (C −A) follows by
symmetry. In fact, this statement is seen to be equivalent to the one we proved above by exchanging
the roles of A and B.

Together, we obtain (A−B)∪ (B−C)∪ (C−A) = (B−A)∪ (C−B)∪ (A−C).

And here is the Venn diagram:
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4. First simplify the equation by dividing all coefficients by 7:

9 · x−7 · y = 8.

Let’s work modulo 7.
9 · x−0 ≡ 8 ≡ 15 ≡ 22 ≡ 29 ≡ 36 (mod 7). So x = 4 (mod 7).
Abandoning the modulo arithmetic, we find x = 4+ k ·7. Hence 9 · (4+ k ·7)−7 · y = 8.
7 · y = 9 ·7 · k+36−8 = 9 ·7 · k+28, so y = 9 · k+4.
The pair (x,y) = (7k+4,9k+4) turns out to be a valid solution for each integer k:
9 · (7k+4)−7 · (9k+4) = 9 ·4−7 ·4 = 2 ·4 = 8.
Moreover, this method is assured to produce all such valid solutions.

5. f is clearly injective, but not surjective, as there is no x with f (x) = 0 (or with f (x) = 25).
Thus f is not bijective either.
g is surjective, for each integer y can be obtained as g(3(y−7)).
However, g is not injective, for g(4) = g(5).
Thus g is not bijective either.
Since g is not injective, f ◦g cannot be injective, regardless what f is: f ◦g(4) = f ◦g(5).
Since f is not surjective, f ◦g cannot be surjective, regardless what g is:
there is no x with ( f ◦g)(x) = 0 (or with ( f ◦g)(x) = 25).
Thus f ◦g is not bijective either.
(g◦ f )(x) = x+8. This function is (injective, surjective and) bijective.

6. For each real number r ∈R, define the function fr by

fr(x) =
{

1 if x = r
0 otherwise

For two different r,s ∈R surely fr and fs are different functions. Thus we have found an injective
mapping from the reals to the set S of functions from the reals to the integers. This implies that S
is at least as large as R. Since R is uncountable, so is S.
(Alternative argument: Let T := { fr | r ∈ R}. The above creates a bijection between R and T , so
T is as large as R, which is uncountable. Since T ⊆ S, the set S must be uncountable too.)


