DMP Class Test

Solutions

23 October 2024

- We prove the equivalent statement that k² + k is even for each integer k.
 In fact k² + k can be written as k(k + 1), and either k or k + 1 must be even. When multiplying an even number with an integer, the result is still even.
- 2. The proof is by strong induction. Let P(n) be the statement " $e_n = 3^{f_n}$ ".

Base cases: $e_0 = 1 = 3^0 = 3^{f_0}$. So P(0) holds. Moreover, $e_1 = 3 = 3^1 = 3^{f_1}$. So P(1) holds too.

Induction step: Assuming, for some $k \ge 1$, that P(j) holds for all j with $0 \le j \le k$, we must obtain P(k+1). So we assume that $e_j = 3^{f_j}$ for all j with $0 \le j \le k$. Below we use this assumption for the two values j = k and j = k-1.

Now $e_{k+1} = e_k \cdot e_{k-1} = 3^{f_k} \cdot 3^{f_{k-1}} = 3^{f_k + f_{k-1}} = 3^{f_{k+1}}$. This is P(k+1).

Thus, by strong induction, P(n) holds for all $n \ge 0$.

3. To prove that $(A - B) \cup (B - C) \cup (C - A) = (B - A) \cup (C - B) \cup (A - C)$ by the element method, first suppose that $x \in (A - B) \cup (B - C) \cup (C - A)$. There are three cases to consider. For reasons of symmetry, I need to consider only the case that $x \in A - B$. The other two cases, that $x \in B - C$ or $x \in C - A$, necessary proceed in the same way — one can see that this must be so by cyclicly rotating the roles of *A*, *B* and *C*.

Assuming $x \in A - B$, we obtain that $x \in A$ and $x \notin B$. Now we make a further case distinction, depending on whether $x \in C$.

In case $x \in C$, given that $x \notin B$, we have $x \in C - B$, and thus $x \in (B - A) \cup (C - B) \cup (A - C)$.

In case $x \notin C$, given that $x \in A$, we obtain $x \in A - C$, and thus $x \in (B - A) \cup (C - B) \cup (A - C)$.

So in all cases $x \in (B-A) \cup (C-B) \cup (A-C)$.

It follows that $(A - B) \cup (B - C) \cup (C - A) \subseteq (B - A) \cup (C - B) \cup (A - C)$

The other direction, that $(B - A) \cup (C - B) \cup (A - C) \subseteq (A - B) \cup (B - C) \cup (C - A)$ follows by symmetry. In fact, this statement is seen to be equivalent to the one we proved above by exchanging the roles of *A* and *B*.

Together, we obtain $(A - B) \cup (B - C) \cup (C - A) = (B - A) \cup (C - B) \cup (A - C)$. And here is the Venn diagram:

4. First simplify the equation by dividing all coefficients by 7:

$$9 \cdot x - 7 \cdot y = 8.$$

Let's work modulo 7.

 $9 \cdot x - 0 \equiv 8 \equiv 15 \equiv 22 \equiv 29 \equiv 36 \pmod{7}$. So $x = 4 \pmod{7}$. Abandoning the modulo arithmetic, we find $x = 4 + k \cdot 7$. Hence $9 \cdot (4 + k \cdot 7) - 7 \cdot y = 8$. $7 \cdot y = 9 \cdot 7 \cdot k + 36 - 8 = 9 \cdot 7 \cdot k + 28$, so $y = 9 \cdot k + 4$. The pair (x, y) = (7k + 4, 9k + 4) turns out to be a valid solution for each integer k: $9 \cdot (7k + 4) - 7 \cdot (9k + 4) = 9 \cdot 4 - 7 \cdot 4 = 2 \cdot 4 = 8$. Moreover, this method is assured to produce all such valid solutions.

5. *f* is clearly injective, but not surjective, as there is no *x* with f(x) = 0 (or with f(x) = 25). Thus *f* is not bijective either.

g is surjective, for each integer y can be obtained as g(3(y-7)).

However, *g* is not injective, for g(4) = g(5).

Thus g is not bijective either.

Since g is not injective, $f \circ g$ cannot be injective, regardless what f is: $f \circ g(4) = f \circ g(5)$.

Since f is not surjective, $f \circ g$ cannot be surjective, regardless what g is:

there is no x with $(f \circ g)(x) = 0$ (or with $(f \circ g)(x) = 25$).

Thus $f \circ g$ is not bijective either.

 $(g \circ f)(x) = x + 8$. This function is (injective, surjective and) bijective.

6. For each real number $r \in \mathbb{R}$, define the function f_r by

$$f_r(x) = \begin{cases} 1 & \text{if } x = r \\ 0 & \text{otherwise} \end{cases}$$

For two different $r, s \in \mathbb{R}$ surely f_r and f_s are different functions. Thus we have found an injective mapping from the reals to the set *S* of functions from the reals to the integers. This implies that *S* is at least as large as \mathbb{R} . Since \mathbb{R} is uncountable, so is *S*.

(Alternative argument: Let $T := \{f_r \mid r \in \mathbb{R}\}$. The above creates a bijection between \mathbb{R} and T, so T is as large as \mathbb{R} , which is uncountable. Since $T \subseteq S$, the set S must be uncountable too.)