Discrete Mathematics and Probability Week 6

Heather Yorston

Springer Texts in Statistics

Matthew A. Carlton Jay L. Devore

Probability with Applications in Engineering, Science, and Technology

Second Edition

EXTRAS ONLINE

🖉 Springer

Topics

- Counting: thinking algorithmically
- Events: what could happen in principle
- Experiments: how can events interact
- Probability: quantifying what could happen

Counting

Counting

Basic principles of combinatorics:

- if an experiment has *n* outcomes;
 and another experiment has *m* outcomes,
- then the two experiments jointly have $n \cdot m$ outcomes.

2.6 = 12 outcomes.

Permutations

Definition

n

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of *n* different objects. The *permutations* of *H* are the different orders in which you can write all of its elements.

Car Race
$$\{A, B, C, D, E\}$$

(ABCED)
 $5 \times 4 \times 3 \times 2 \times 1 = 5! = 120$
permutations
 $! = n \cdot (n-1) \cdot (n-2) \cdots 1$
 $0! = 1$

Permutations with repetitions

Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1 , n_2 of h_2 , $\dots n_r$ of h_r . The *permutations with repetitions* of H are the different orders in which you can write all of its elements.

k-Permutations

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of <u>n</u> different objects. The *k*-permutations of *H* are the different ways in which one can pick and write *k* of its elements of *H* in order.

$$n f_{k} = \frac{n!}{(n-k)!}$$

Top 3 in a car race with 5 cars
 $5 P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{60}{ABC + CAB}$

k-Permutations with repetitions

Definition

Let $H = \{h_1, \ldots, h_2, \ldots, h_r, \ldots\}$ be a set of *r* different types of repeated objects, each of infinite supply. The *k*-permutations with repetitions of *H* are the different orders in which one can write an ordered sequence of length *k* using the elements of *H*.

3 letter words English alphabet
=
$$26 \times 26 \times 26$$

= 26^3
How many bit strugs of length k.
 $\{0,1\}$
= 2^k

k-Combinations

k- Combinations Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of <u>*n*</u> different objects. The *k*-combinations of *H* are the different ways in which one can pick *k* of its elements without order.

$$C(n,k) \qquad n C_{k} = \binom{n}{k} = \binom{n!}{(n-k)!} \qquad ABC$$

$$C_{k}^{n} \qquad choose. \qquad \qquad = BAC$$

$$1 \quad unordered. \qquad = CAB$$

$$E_{k} \qquad Would of forming a committee of 5 shudenes
from a class of 30.
$$30C_{5} = \binom{30}{5} = \frac{30!}{5!25!} = 142506$$

$$\frac{n!}{(n-k)!}$$$$

9/31

Events

Events

A mathematical model for experiments:

- Sample space: the set Ω of all possible outcomes
- An *event* is a collection of possible outcomes: $E \subseteq \Omega$
- Union $E \cup F$ and intersection $E \cap F$ of events make sense

¹Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Examples

Union and intersection

Union

Union $E \cup F$ of events E and F means either E or F or both. Infinite union $\bigcup_i E_i$ of events E_i means at least one of the E_i 's.

Intersection

Intersection $E \cap F$ of events E and F means both E and E. Infinite intersection $\bigcap_i E_i$ of events E_i means each of the E_i 's.

Definition

If $E \cap F = \emptyset$, we call events E and F mutually exclusive. If events E_1, E_2, \ldots satisfy $E_i \cap E_j = \emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication

Remark

If the event *E* is a *subset* of the event *F*, written $E \subseteq F$, then the occurrence of *E implies* that of *F*.

Complementarity

Definition $E^{c} \propto E^{c}$ The complement of an event E is $E^{c} = \Omega - E$.This is the event that E does not occur.

 $E \cap E^{c} = \phi$ $E \cup E^{c} = \Sigma$

Experiments

Experiments

How events can interact:

- Commutativity
- Distributivity
- Associativity
- De Morgan's Law

Properties of events

• Commutativity: $E \cup F = F \cup E$ $E \cap F = F \cap E$

Associativity: $E \stackrel{\frown}{\cup} (F \stackrel{\frown}{\cup} G) = (E \stackrel{\frown}{\cup} F) \cup G$ $E \cap (F \cap G) = (E \cap F) \cap G$

Properties of events

► Distributivity: $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$ $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

De Morgan's law

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c$

Probability

- Definition by axioms
- How to compute probabilities
- Inclusion-exclusion principle
- Equally likely outcomes

Axioms of probability

Definition

The probability **P** on a sample space Ω assigns numbers to events of Ω in such a way that:

- 1. the probability of any event is non-negative: $|\mathbf{P}(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

$$\mathbf{P}(\bigcup_{i} E_{i}) = \sum_{i} \mathbf{P}(E_{i})$$

How to compute probabilities

Proposition For any event, $\mathbf{P}(E^c) = 1 - \mathbf{P}(E)$.

Corollary
We have
$$\mathbf{P}(\emptyset) = \mathbf{P}(\Omega^c) = 1 - \mathbf{P}(\Omega) = 1 - 1 = 0$$
.
For any event, $\mathbf{P}(E) = 1 - \mathbf{P}(E^c) \le 1$.

How to compute probabilities

Principle of Inclusion-exclusion (PIE)

Proposition

For any events:

Principle of Inclusion-exclusion (PIE)

Proposition

For any events:

 $\mathbf{P}(E \cup F \cup G) = \mathbf{P}(E) + \mathbf{P}(F) + \mathbf{P}(G)$ $- \mathbf{P}(E \cap F) - \mathbf{P}(E \cap G) - \mathbf{P}(F \cap G)$ $+ \mathbf{P}(E \cap F \cap G).$

 $\mathbf{P}(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{1 \le i \le n} \mathbf{P}(E_i)$ - $\sum_{1 \le i_1 < i_2 \le n} \mathbf{P}(E_{i_1} \cap E_{i_2})$ + $\sum_{1 \le i_1 < i_2 < i_3 \le n} \mathbf{P}(E_{i_1} \cap E_{i_2} \cap E_{i_3})$ - \dots + $(-1)^{n+1} \mathbf{P}(E_1 \cap E_2 \cap \dots \cap E_n).$

Example

Example

In a sports club,

36 members play tennis,
28 play squash,
18 play badminton,
4 play tennis, squash and badminton.

How many play at least one of these games?

= 36+28+18 - 22 - 12 -9 + 4 = 4 3

How to compute probabilities

Proposition If $E \subseteq F$, then $\mathbf{P}(F - E) = \mathbf{P}(F) - \mathbf{P}(E)$. Corollary

If $E \subseteq F$, then $\mathbf{P}(E) \leq \mathbf{P}(F)$.

Equally likely outcomes

The return of counting

Finite sample space, $|\Omega| = N < \infty$, has special important case where each experiment outcome has *equal probability*:

$$\mathsf{P}(\omega) = rac{1}{N}$$
 for all $\omega \in \Omega$

Definition

Outcomes $\omega \in \Omega$ are also called *elementary events*.

Example

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 6?

What's wrong with this solution? "The number 6 is one out of the possible values 2, 3, ..., 12 for the sum, and the answer is $\frac{1}{11}$."

Summary

- Counting: permutations, combinations, repetitions
- Events: sample space, union, intersection, complement
- Experiments: distributivity, De Morgan's law
- Probability: axioms, how to compute, equally likely outcomes