Discrete Mathematics and Probability Week 6

Heather Yorston

Matthew A. Carlton Jay L. Devore

Probability with Applications in Engineering, Science, and Technology

Second Edition

EXTRAS ONLINE

Topics

- ▶ Counting: thinking algorithmically
- \blacktriangleright Events: what could happen in principle
- ▶ Experiments: how can events interact
- ▶ Probability: quantifying what could happen

[Counting](#page-3-0)

Counting

Basic principles of combinatorics:

- \blacktriangleright if an experiment has *n* outcomes; and another experiment has m outcomes,
- \blacktriangleright then the two experiments jointly have $n \cdot m$ outcomes.

 $2.6 = 12$ outcomes.

Permutations

Definition

 M

Let $H = \{h_1, h_2, \ldots, h_n\}$ be a set of *n* different objects. The permutations of H are the different orders in which you can write all of its elements.

Car Race
$$
\{A, B, C, D, E\}
$$

\n
$$
\begin{cases}\nAB C E D \\
5 x 4 x 3 x 2 x 1 = 5! = 120\n\end{cases}
$$
\n
$$
\begin{cases}\n1 = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 1 \\
0! = 1\n\end{cases}
$$
\n
$$
\begin{cases}\nP = 1\n\end{cases}
$$

Permutations with repetitions

Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1 , n_2 of h_2 , ... n_r of h_r . The *permutations with repetitions* of H are the different orders in which you can write all of its elements.

k-Permutations

Definition

Let $H = \{h_1, h_2, \ldots, h_n\}$ be a set of \underline{n} different objects. The k -permutations of H are the different ways in which one can pick and write k of its elements of H in order.

÷,

$$
nP_{k} = \frac{n!}{(n-k)!}
$$

\nTop 3 in a car race with 5 cars
\n $5P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{60}{1}$
\n $60P_{k} = 6P_{k} = 6P_{k}$

k-Permutations with repetitions

Definition

Let $H = \{h_1, \ldots, h_2, \ldots, \ldots, h_r, \ldots\}$ be a set of r different types of repeated objects, each of infinite supply. The k -permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H .

3 **letter words** English alphabet
\n
$$
= 26 \times 26 \times 26
$$
\n
$$
= 26
$$
\n
$$
= 26
$$
\nHow many bit strips of length k.
\n
$$
\{0, 1\}
$$
\n
$$
= 2^{k}
$$

k -Combinations

Definition

Let $H = \{h_1, h_2, \ldots, h_n\}$ be a set of *n* different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

$$
C(n,k) \t n C_k = {n \choose k} = \frac{n!}{k! (n-k)!} \t nB C
$$
\n
$$
C_n
$$
\n<

[Events](#page-10-0)

Events

A mathematical model for experiments:

- $▶$ Sample space: the set $Ω$ of all possible outcomes
- An event is a collection¹ of possible outcomes: $E \subseteq \Omega$
- ▶ Union $E \cup F$ and intersection $E \cap F$ of events make sense

¹Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Examples

Union and intersection

Union

Union $E \cup F$ of events E and F means either E or F or both. Infinite union $\bigcup_i E_i$ of events E_i means at least one of the E_i 's.

Intersection

Intersection $E \cap F$ of events E and F means both E and E. Infinite intersection $\bigcap_i E_i$ of events E_i means each of the E_i 's.

Definition

If $E \cap F = \emptyset$, we call events E and F mutually exclusive. If events E_1, E_2, \ldots satisfy $E_i \cap E_j = \emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication

Remark

If the event E is a *subset* of the event F, written $E \subseteq F$, then the occurrence of E implies that of F .

Complementarity

E^c or E Definition The *complement* of an event E is $E^c = \Omega - E$. This is the event that E does not occur.

 $E \cap E^{c} = \phi$
 $E \cup E^{c} = \Omega$

[Experiments](#page-16-0)

Experiments

How events can interact:

- ▶ Commutativity
- ▶ Distributivity
- ▶ Associativity
- ▶ De Morgan's Law

Properties of events

▶ Commutativity: $E \cup F = F \cup E$ $E \cap F = F \cap E$

▶ Associativity: $E \circ (F \circ G) = (E \circ F) \cup G$ $E \cap (F \cap G) = (E \cap F) \cap G$

Properties of events

▶ Distributivity: $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$ $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

De Morgan's law

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c$

Probability

- ▶ Definition by axioms
- \blacktriangleright How to compute probabilities
- ▶ Inclusion-exclusion principle
- ▶ Equally likely outcomes

Axioms of probability

Definition

The *probability* **P** on a sample space Ω assigns *numbers* to *events* of Ω in such a way that:

- 1. the probability of any event is non-negative: $|P(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

$$
\mathbf{P}(\bigcup_{i} E_i) = \sum_{i} \mathbf{P}(E_i)
$$

How to compute probabilities

Proposition

For any event, $P(E^c) = 1 - P(E)$.

Corollary
We have
$$
P(\emptyset) = P(\Omega^c) = 1 - P(\Omega) = 1 - 1 = 0
$$
.
For any event, $P(E) = 1 - P(E^c) \le 1$.

How to compute probabilities

Principle of Inclusion-exclusion (PIE)

Proposition

For any events:

Principle of Inclusion-exclusion (PIE)

Proposition

For any events:

 $P(E \cup F \cup G) = P(E) + P(F) + P(G)$ $-$ P($E \cap F$) – P($E \cap G$) – P($F \cap G$) $+$ P(E ∩ F ∩ G).

 $P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum P(E_i)$ 1≤i≤n \sum **P**($E_{i_1} \cap E_{i_2}$) $1\leq i_1\leq i_2\leq n$ $+\sum$ P($E_{i_1} \cap E_{i_2} \cap E_{i_3}$) $1 \le i_1 < i_2 < i_3 \le n$ − · · · $+ (-1)^{n+1} P(E_1 \cap E_2 \cap \cdots \cap E_n).$

Example

Example

In a sports club,

36 members play tennis, $\left(\frac{22}{2} \right)$ play tennis and squash, 28 play squash, 12 play tennis and badminton, 18 play badminton, $\sqrt{9/p}$ lay squash and badminton, 4 play tennis, squash and badminton.

How many play at least one of these games?

 $R = \begin{cases} 1 & \text{or } r > 0 \\ 3 & \text{or } r > 1 \end{cases}$
= 36+28+18 - 22 - 12
- 9 + 4

How to compute probabilities

Proposition If $E \subseteq F$, then $P(F - E) = P(F) - P(E)$.

Corollary If $E \subseteq F$, then $P(E) \le P(F)$.

[Equally likely outcomes](#page-29-0)

The return of counting

Finite sample space, $|\Omega| = N < \infty$, has special important case where each experiment outcome has equal probability:

$$
\mathsf{P}(\omega) = \frac{1}{N} \qquad \text{for all } \omega \in \Omega
$$

Definition

Outcomes $\omega \in \Omega$ are also called *elementary events*.

Example

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 6?

What's wrong with this solution? "The number 6 is one out of the possible values 2, 3, . . . , 12 for the sum, and the answer is $\frac{1}{11}$."

Summary

- \triangleright Counting: permutations, combinations, repetitions
- ▶ Events: sample space, union, intersection, complement
- ▶ Experiments: distributivity, De Morgan's law
- ▶ Probability: axioms, how to compute, equally likely outcomes