Discrete Mathematics and Probability Week 7

Heather Yorston

Topics

- Recap: examples with equally likely outcomes
- Conditional probability: how knowledge influences probability
- Bayes' theorem: link probabilities of related events

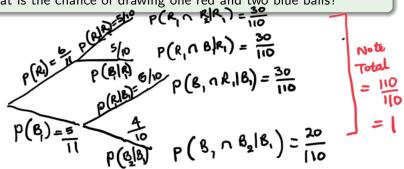
Recap

Permutations and combinations

Example

An urn contains 6 red balls and 5 blue balls.

Draw three balls at random, at once (that is, without replacement). What is the chance of drawing one red and two blue balls?



Sample space

$$\begin{vmatrix} JL \end{vmatrix} = & \| P_{3} = \underbrace{\| 1 |}_{(1|-3)}! = \| 1 \times 10 \times 9 \\ \text{Event space} \\ E = & \left\{ R_{10}^{0} B_{2}, B_{1}^{0} R_{1} B_{2}, B_{1}^{0} B_{2} R_{1}^{2} \right\} \\ & \int_{6.5.4}^{1} & \int_{5.6.4}^{1} & \int_{5.4.6}^{1} & \text{ways} \\ |E| = & 3 \times 4 \times 5 \times 6 \\ P(E) = & \underbrace{|E|}_{|JL|} = (3) \frac{4 \cdot 5.6}{9 \cdot 10 \cdot 11} = \frac{4}{11} \\ & \int_{7.6}^{1} & \int_{10}^{1} \times \frac{6}{9} \times \frac{1}{9} + \frac{5}{11} \times \frac{6}{10} \times \frac{4}{9} + \frac{5}{11} \times \frac{4}{10} \times \frac{6}{9} \\ = & 3 \times \left(\frac{6.5.4}{11 \cdot 10.9} \right) \end{aligned}$$

Permutations and combinations

Example

An urn contains n balls, one of which is red, all others are black. We draw k balls at random (without replacement). What is the chance that the red ball will be drawn?

$$S = \{k = \text{ combinations of } n\}$$

$$[S] = \binom{n}{k} \quad E = \{p \text{ lock real ball and } k = 1 \\ \text{others} \}$$

$$|E| = \binom{1}{1}\binom{n-1}{k-1}$$

$$P(E) = \frac{|E|}{|R|} = \binom{1}{1}\binom{n-1}{k-1} = \frac{(n-1)!}{(n-1)!} \frac{k!}{(n-k)!}$$

$$= \frac{k}{n}$$

Alternative Method

Drawning in order:

$$E_{i} = \{i^{th} \text{ draw is red } \},$$

$$p(E_{i}) = \frac{1}{n}$$

$$E = \bigcup E_{i}$$

$$p(E) = p(\bigcup E_{i}) = \sum_{l=1}^{k} p(E_{i}) = \sum_{l=1}^{k} \frac{1}{n} = \frac{1}{n} \sum_{l=1}^{k} \frac{1}{n} = \frac{1}{n}$$

Equally likely events

Example

Out of n people, what is the probability that no two share a birthday?

pigeonhole principle

0 if
$$n \neq 365$$
 (pigeonhole principle)
 $\Im = \{ choice of day for each of n people \}$
[with replacement]
 $[\Im[= 365^n]$
 $E = \{ no \ coinciding \ birth days \}$
 $[E] = 365 \times 364 \times \dots (365-n+1) = \frac{365!}{(365-n)!}$
 $D(E) = \frac{|E|}{|\Im|} = \frac{365!}{(365-n)!} = \frac{n |p(E)|}{(365-n)!} = \frac{n |p(E)|}{30} = \frac{363!}{39\%}$

7 Jetters

302 in same pigeonhole

BLDE

Conditional probability

Conditional probability

Often you have *partial information* about the outcome of an experiment. This alters the likelihoods for various outcomes.

Example

Roll two dice. What is the probability that the sum of the numbers is 8? What if we know that the first die shows a 5?

Reduced sample space

We reduced our world to the event we were given: $F = \{ \text{first die shows 5} \} = \{ (5, 1), (5, 2), ..., (5, 6) \}$

Definition

The event that is given to us is called a *reduced sample space*. We can simply work in this set to figure out the conditional probabilities given this event.

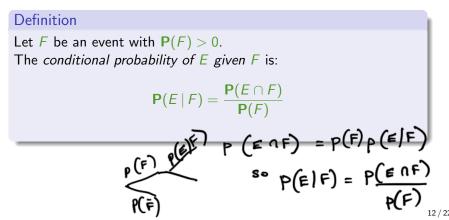
The event *F* has 6 equally likely outcomes. Only one of them, (5, 3), provides a sum of 8. Hence the conditional probability is $\frac{1}{6}$.

Definition of conditional probability

The question can be reformulated.

 $E = \{$ the sum is 8 $\} = \{(2, 6), (3, 5), \dots, (6, 2)\}$

"In what proportion of cases in F will E also occur?" "How does probability of 'E and F' compare to probability of F?"



Axioms

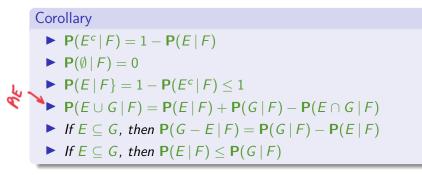
Proposition

Conditional probability $P(\cdot | F)$ satisfies the axioms of probability:

- 1. conditional probability is non-negative: $P(E \mid) \ge 0$;
- 2. conditional probability of sample space is one: $\mathbf{P}(\Omega | F) = 1$;
- 3. for countably many mutually exclusive events E_1, E_2, \ldots :

$$\mathbf{P}\Big(\bigcup_{i} E_i \,\Big|\, F\Big) = \sum_{i} \mathbf{P}(E_i \,|\, F)$$

How to compute conditional probabilities



BUT: Don't change the condition! $P{E | F}$ and $P{E | F^c}$ have nothing to do with each other.

Multiplication rule

Proposition (Multiplication rule)

 $\mathbf{P}(E_1 \cap \cdots \cap E_n) = \mathbf{P}(E_1) \cdot \mathbf{P}(E_2 \mid E_1) \cdot \mathbf{P}(E_3 \mid E_1 \cap E_2)$ $\cdots \mathbf{P}(E_n \mid E_1 \cap \cdots \cap E_{n-1})$

Example again

Example

An urn contains 6 red and 5 blue balls. We draw three balls at random, at once (that is, without replacement). What is the chance of drawing one red and two blue balls?

$$P(R_{1} \cap B_{1} \cap B_{2}) + P(B_{1} \cap R_{1} \cap R_{2}) + P(B_{1} \cap B_{2} \cap R_{1})$$

$$= P(R_{1}) \cdot P(B_{1}|R_{1}) \cdot P(B_{2}|R_{1}) + \dots$$

Bayes' theorem

The aim is to say something about P(F | E), once we know P(E | F) (and other things...). This will be very useful, and serve as a fundamental tool in probability and statistics.

The Law of Total Probability

Theorem (*Partition Theorem*) $\mathbf{P}(E) = \mathbf{P}(E | F) \cdot \mathbf{P}(F) + \mathbf{P}(E | F^c) \cdot \mathbf{P}(F^c)$

The Law of Total Probability

Theorem (Partition Theorem)

$$\mathbf{P}(E) = \mathbf{P}(E \mid F) \cdot \mathbf{P}(F) + \mathbf{P}(E \mid F^{c}) \cdot \mathbf{P}(F^{c})$$

Definition

Countably many events F_1 , F_2 , ... form a *partition* of Ω if $F_i \cap F_j = \emptyset$ and $\bigcup_i F_i = \Omega$.

Theorem (Partition Theorem)

For any event E and any partition F_1, F_2, \ldots :

$$\mathbf{P}(E) = \sum_{i} \mathbf{P}(E \mid F_i) \cdot \mathbf{P}(F_i)$$

Summary

- Probability: multiple ways to compute
- Conditional probability: reduced sample space, multiplication rule
- Bayes' theorem: partition theorem, belief update