Discrete Mathematics and Probability Week 8

Heather Yorston

Topics

- Bernoulli distribution: single trial
- Binomial distribution: many independent trials
- Poisson distribution: counting independent trials
- Geometric distribution: first success in independent trials

Bernoulli and Binomial distributions

Bernoulli distribution

Definition

Suppose that *n* independent trials are performed, each succeeding with probability *p*. Let *X* count the number of successes within the *n* trials. Then *X* has the *Binomial distribution with parameters n* and *p* or, in short, $X \sim Bin(n, p)$.

Special case n = 1 is called *Bernoulli distribution with parameter p*.

Bernoulli: mass function

Proposition Let $X \sim Bin(n, p)$. Then X = 0, 1, ..., n, and its mass function is $p(i) = \mathbf{P}(X = i) = {n \choose i} p^i (1-p)^{n-i}$, i = 0, 1, ..., n.

In particular, the Bernoulli(p) variable can take on values 0 or 1, with respective probabilities

$$p(0) = 1 - p, \qquad p(1) = p,$$

$$p(not a six) \qquad \gamma(a six on (1 roll)) = -\frac{1}{6}$$

$$= 1 - \frac{1}{6} = -\frac{5}{6}$$
of a due

Mass function

$$n = 1 \quad \text{trial with 1 event}$$

$$P(x=i) = p = 1 - p(x=0) = 1 - p. \quad (9)$$

$$f(k:p) \begin{cases} p & \text{if } k=1 \quad (\text{success}) \\ 1 - p = q \quad \text{if } k=0 \quad (failure) \end{cases}$$

$$f(k:p) = p^{k} \cdot (1-p)^{1-k} \quad \text{for } k \in \{0,1\}$$
Bernoulli distribution is a special case of the Binomial distribution with $n = 1$,

.

Bernoulli: expectation, variance

Proposition Let $X \sim Beg(p)$. Then: $\mathbf{E}(X) = \mathbf{p}, \quad and \quad \mathbf{Var}(X) = \mathbf{p}(1-p) = \mathbf{p}\mathbf{2}$ Note 1-p=2 $X \sim Ber(p)$ E(x) = P.Var(X) = p(1-p) $\mu = E(x) = \sum_{x \in P} (x) = (1)P(x=i) + (0)P(x=i)$ $= 1 \cdot p + 0 \cdot q = p$

Proof

Example

82	Decahedral die numbered 1,2 X is obtaining when the die	with faces ,10 a square numbe is rolled once.	ſ
$S = \{1, 2\}$ $E = \{1, 4\}$		$\frac{ E }{ S } = \frac{3}{10}$	= 0, 3
$\times \sim B$	$er(0.3) \qquad \frac{x}{p(x)}$	= x) 0.7 (0.3,	
μ = E(x)		0.3 = 0.3 = 9	> ,
Var(x)		(0.7) = 0.21	

Proposition

Let $X \sim Bin(n, p)$. Then X = 0, 1, ..., n, and its mass function is

$$\mathfrak{p}(i) = \mathbf{P}(X = i) = {n \choose i} p^i (1 - p)^{n-i}, \quad i = 0, 1, ..., n.$$

Binomial variate can be considered as the sum of n independent Bernoutli variates with the probability of 'success'. $X \sim Bin(n,p) \equiv X \sim Ber(p) + Ber(p) \dots$... Ber(p) n fime $\mathcal{M}_{BiN}(n,p) = E(x) = \mu_{eer} + \mu_{eer} + \dots \quad \mu_{eer} n + mer n +$

Examples

Poisson distribution

Poisson: mass function

λ is mean number of events The Poisson distribution is of central importance in Probability. Will later see relation to Binomial.

Definition

Fix a positive real number λ . The random variable X is *Poisson* distributed with parameter λ , in short $X \sim Poi(\lambda)$, if it is non-negative integer valued, and its mass function is

$$\mathfrak{p}(i) = \mathbf{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda'}{i!}, \qquad i = 0, 1, 2, \ldots$$

For $X \sim Poi(\lambda)$, $\mathbf{E}(X) = \mathbf{Var}(X) = \lambda$.

Poisson approximation of Binomial

Proposition

Fix $\lambda > 0$, and suppose that $Y_n \sim Bin(n, p)$ with p = p(n) in such a way that $\underline{n \cdot p \rightarrow \lambda}$. Then the distribution of Y_n converges to $Poisson(\lambda)$:

$$\forall i \geq 0 \qquad \mathbf{P}(Y_n = i) \xrightarrow[n \to \infty]{} e^{-\lambda} \frac{\lambda'}{i!}.$$

Example

Poisson: many indept small prob everts.
summing up to "a few" in expectation.
Poi (x=i)
Poi (x=i)
Poi (x=i)

$$e^{-\lambda} \frac{1}{i!}$$

 $e^{-\lambda} \frac{1}{i!}$
 $e^{-\lambda} \frac{1}{$

Example

A Geiger counter is used in recording radioactive events. Each radioactive event arriving at the counter shows as a number. The number of radioactive events recorded in a room is on average 2 every 5 seconds - background count.

Geometric distribution

Geometric: mass function

Again independent trials, but now ask: when is the first success?

Definition

Suppose that independent trials, each succeeding with probability p, are repeated until the first success. The total number X of trials made has the *Geometric*(p) distribution (in short, $X \sim Geo(p)$).

Proposition

X can take on positive integers, with probabilities $p(i) = (1 - p)^{i-1} \cdot p$, i = 1, 2, ...

$$\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} \times \frac{1}{6}$$

Geometric: mass function

Corollary

The Geometric random variable is (discrete) memoryless:

$$\mathbf{P}\{X \ge n+k \,|\, X > n\} = \mathbf{P}\{X \ge k\}$$

for every $k \ge 1$, $n \ge 0$.

Geometric: expectation, variance

/

Proposition For a Geometric(p) random variable X: $\mathbf{E}(X) = \frac{1}{p} \qquad \mathbf{Var}(X) = \frac{1-p}{p^2}$

L

Example

Summary

- Bernoulli distribution: single trial
- Binomial distribution: many independent trials
- Poisson distribution: counting independent trials
- Geometric distribution: first success in independent trials