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Week 10 Topics

Chapter 3: Continuous Random Variables and Probability Distributions

§3.7 Transformations of a Random Variable.

Chapter 4: Joint Probability Distributions and Their Applications
§4.1 Jointly Distributed Random Variables

§4.2 Expected Values, Covariance, and Correlation

§4.3 Properties of Linear Combinations (but not Moment Generating Functions)

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.
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Transforming a Random Variable

Let X be a continuous random variable. We have already seen situations where we work with a
function of X rather than with X itself. One example is rescaling a random variable.

Rescaling
For any constants a and b the mean, variance and standard deviation of (aX+ b) can be
calculated from the corresponding values for X.

E(aX+ b) = aE(X) + b Var(aX+ b) = a2 Var(x) SD(aX+ b) = |a|SD(X)

Here (aX+ b) is itself a continuous random variable, and we can in general consider random
variables Y = g(X) for arbitrary functions g.
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Example Transformations

Let X be a continuous random variable with PDF fX(x) and CDF FX(x).

Suppose Y = g(X) is a transformation giving another continuous random variable Y.

Example Transformations
If X is a mass in kilograms, then 1000X is the same mass in grams.
If R is the radius of a circle, then πR2 is its area.
If T is the time to travel a distance d, then (d/T) is the average speed for the journey.

We can ask: what are the PDF and CDF for these transformed variables?
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Transformed CDF

Let X be a continuous random variable with PDF fX(x) and CDF FX(x).

Suppose Y = g(X) is a transformation giving another continuous random variable Y with
PDF fY(y) and CDF FY(y).

Suppose also that g is monotonically increasing: for all possible values a < b of random
variable X we have g(a) < g(b).

Then there will be an inverse function h where X = h(Y) and we can calculate as follows.

FY(y) = P(Y ⩽ y) = P(g(X) ⩽ y) = P(X ⩽ h(y)) = FX(h(y))

If g is monotonically decreasing then it still has an inverse h but instead:

FY(y) = P(Y ⩽ y) = P(g(X) ⩽ y) = P(X ⩾ h(y)) = 1 − FX(h(y)) .
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Example Transformations

Let X be a continuous random variable with PDF fX(x) and CDF FX(x).

Suppose Y = g(X) is a transformation giving another continuous random variable Y, with
PDF fY(y) and CDF FY(y), and where g is monotonically increasing or decreasing on the range
of possible values for X.

Example Transformations

Grams and kilograms Y = 1000X FY(y) = FX(y/1000)
Area and radius A = πR2 FA(a) = FR(

√
a/π) a ⩾ 0

Speed and Time S = d/T FS(s) = 1 − FT (d/s)
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Example

1. Continuous random variable M is a program runtime in minutes, and H is the same
runtime in hours. Give the function for calculating H from M.

Give the inverse function, for calculating M from H.

2. F is a daily temperature on the Fahrenheit scale, and C is that temperature on the Celsius
scale. Give the function for calculating C from F.

Give the inverse function, for calculating F from C.

3. If FM(m) and FF(f) are cumulative distribution functions for M and F then give the
corresponding CDFs FH(h) and FC(c) for H and C.
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Transformed PDF

Let X be a continuous random variable with PDF fX(x).

Suppose Y = g(X) is a transformation giving another continuous random variable Y, with
PDF fY(y).

Suppose that g is monotonic on the set of all possible values X.

Then there will be an inverse function X = h(Y).

Suppose also that h has derivative h ′(y) for all the possible values of Y. Then we can directly
calculate the PDF for Y.

fY(y) = fX(h(y)) ·
∣∣h ′(y)

∣∣
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Example Transformations

Let X be a continuous random variable with PDF fX(x) and CDF FX(x).

Suppose Y = g(X) is a transformation giving another continuous random variable Y.

Example Transformations

Grams and kilograms Y = 1000X fY(y) = fX(y/1000)/1000
Area and radius A = πR2 fA(a) = fR(

√
a/π)/(2

√
πa) a ⩾ 0

Speed and Time S = d/T fS(s) = fT (d/s) · (d/s2)
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Example

4. Continuous random variable M with PDF fM(m) is a program runtime in minutes, and H

is the same runtime in hours. Find the PDF fH(h) for H.

5. If continuous random variable F, measuring daily temperature on the Fahrenheit scale, has
PDF fF(f), then calculate the PDF fC(c) for the random variable C giving the same
temperature on the Celsius scale.
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Week 10 Topics

Chapter 3: Continuous Random Variables and Probability Distributions

§3.7 Transformations of a Random Variable.

Chapter 4: Joint Probability Distributions and Their Applications
§4.1 Jointly Distributed Random Variables

§4.2 Expected Values, Covariance, and Correlation

§4.3 Properties of Linear Combinations (but not Moment Generating Functions)

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.
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Two Discrete Random Variables
Suppose that we have an experiment with sample space S and two discrete random variables X

and Y both defined over that sample space. That is, for any outcome s ∈ S we have real
numbers X(s) and Y(s). Then we can define the joint probability of the two random variables.

Definition
The joint probability mass function (JPMF) of X and Y is a function p(x,y) defined for each
possible pair (x,y) where X may take the value x and Y may take the value y.

p(x,y) = P(X = x and Y = y)

For any set of pairs A ⊆ R× R the probability that (X, Y) lies in A is a sum over pairs.

P((X, Y) ∈ A) =
∑

(x,y)∈A

p(x,y)
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Marginal Probabilities

If we know the joint probability mass function p(x,y) of X and Y then we can calculate the
PMF of each variable individually.

Definition
The random variables X and Y have marginal probability mass functions pX(x) and pY(y) given
by summation.

pX(x) =
∑
y

p(x,y) pY(y) =
∑
x

p(x,y)

Ian Stark DMP Lecture 17 / Transformations and Joint Probability 2024-11-14



Two Continuous Random Variables

Suppose that we have two continuous random variables X and Y both defined over the same
sample space S. That is, for any outcome s ∈ S we have real numbers X(s) and Y(s).

Definition
The joint probability density function (JPDF) of X and Y is a function f(x,y) such that for any
rectangle A = { (x,y) | a ⩽ x ⩽ b, c ⩽ y ⩽ d } we have the following.

P((X, Y) ∈ A) = P(a ⩽ X ⩽ b, c ⩽ Y ⩽ d) =

∫b
a

(∫d
c

f(x,y)dy
)

dx =

∫d
c

(∫b
a

f(x,y)dx
)

dy

(Note: Although this result extends to an arbitrary region R using a “double integral”
∫∫

R, the
construction here for rectangle A is the technically simpler iterated integral.)
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Two Continuous Random Variables

If we treat the joint probability density function f(x,y) as giving a height above the point (x,y)
in a three-dimensional coordinate system then we get a surface in the same way that a
single-variable PDF gives a curve.

x

f(x)

a b

Carlton & Devore Figure 3.2

y

x

f(x, y)

Surface f(x, y)

A = Shaded
      rectangle 

Carlton & Devore Figure 4.1

For the curve on the left, probability is given by the area under the curve. For the surface on the
right, probability is given by the volume under the surface.
For rectangle A on the right the volume under the surface is the probability P((X, Y) ∈ A).
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Marginal Probabilities

Again we can calculate the probability density functions for individual random variables from
their joint PDF.

Definition
Continuous random variables X and Y have marginal probability density functions fX(x)

and fY(y) given by integration.

fX(x) =

∫∞
−∞ f(x,y)dy fY(y) =

∫∞
−∞ f(x,y)dx

Often the values of X or Y will be known to lie within a particular interval, with probability
density zero outside. It’s then possible to restrict the range of integration to just that interval.
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Independent Random Variables
In many situations two random variables X and Y will be linked: knowing information about one
will tell us about the other. For example, the transformations of random variables given earlier
have this: if Y = g(X) then knowing the value of X immediately tells us the value of Y.

Sometimes, though, variables are unconnected and the value of X says nothing about that of Y.

Definition
Two random variables are independent if for every pair of values x and y we have

p(x,y) = pX(x) · pY(y) for discrete random variables X and Y, or, equivalently,

f(x,y) = fX(x) · fY(y) for continuous random variables X and Y.

Alternatively, if these equations fail for some (x,y) then X and Y are dependent.

This is similar to events A and B being independent if P(A ∩ B) = P(A) · P(B).
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More Than Two Random Variables

These ideas extend further, from two random variables being jointly distributed to multiple
random variables over the same sample space.

Definition
If X1,X2, . . . ,Xn are all discrete random variables then their joint probability mass function
(JPMF) is

p(x1, x2, . . . , xn) = P(X1 = x1 ∩ X2 = x2 ∩ · · · ∩ Xn = xn ) .

If these are all continuous random variables then their joint probability density function (JPDF)
is such that for n intervals [a1,b1], [a2,b2], . . . , [an,bn] we have

P(a1 ⩽ X1 ⩽ b1, . . . ,an ⩽ Xn ⩽ bn) =

∫b1

a1

(
. . .
(∫bn

an

f(x1, . . . , xn)dxn

)
. . .
)

dx1 .
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Optional Exercise: Not Examinable, Not Assessed +

I have three six-sided dice that roll fairly but have unusual numbering.

Red 4 4 4 4 4 9

Green 0 5 5 5 5 5

Blue 2 2 2 7 7 7

Calculate the possible outcomes and their probabilities when rolling two dice, one red and one
green. Which is more likely to get the highest score?

Do the same for a green die and a blue die rolled at the same time; and again for blue rolled
against red.

A friend suggests playing a game where you get to choose any one of the three dice, they
choose another, you both roll them and whoever scores highest wins. What should you do?
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Summary

Topics
Transforming a Random Variable

Transformation of Cumulative
Distribution Function

Transformation of Probability
Density Function

Joint probability mass function (JPMF)
Joint probability density function (JPDF)
Independent random variables
Marginal probability mass function (MPMF)
Marginal probability density function (MPDF)
More than two random variables

Reading
Chapter 3, §3.7; pp. 216–220. Chapter 4, §4.1; pp. 239–249.

Exercises
Chapter 3, Exercises 112–128; pp. 220–221. Chapter 4, Exercises 1–21; pp. 249–254.
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