Lecture Discrete Mathematics and

Thursday Week 1 |Probability 2024

Th
Truth i Sefs[ntersection

. fEmpthndlICthn Th(é%tlF'ymor

ntfrFunct""

o Contradiction
There ¢ tniyComposite
AIILOQIC

101 50

Funclions

Graphs

Conditional




Discrete Math: Covered material

*Week 1 (Monday 16 Sept.): Epp Chapter 1. Speaking Mathematically
- Variables
- Language of Sets
- Language of Relations and Functions
- Language of Graphs
Chapter 2: Logic of compound statements
- 2.1 Logical Form and Logical Equivalence
- 2.2 Conditional Statements
Chapter 3: The logic of Quantified Statements
- All except 3.4, which was covered in Inf1A.

*Week 2 (19 & 23 Sept): Epp Chapter 4: Elementary number theory and methods of proof.
- Direct proof, proof by cases, by contradiction and by contraposition
- Skip Section 4.9 and 4.10 (or 4.8 in the 4™ edition).

*Week 3: Epp Ch 5: Induction and Recursion
- Skip 5.1 (you know this already), skip 5.7-5.9
*Week 4: Epp Ch 6: Set theory, without 6.4
Epp Ch 7: Functions
*Week 5: Epp Ch 8: Relations
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Appendix A

PROPERTIES OF THE
REAL NUMBERS™

In this text we take the real numbers and their basic properties as our starting point. We
give a core set of properties, called axioms, which the real numbers are assumed to satisfy,
and we state some useful properties that can be deduced from these axioms.

We assume that there are two binary operations defined on the set of real numbers,
called addition and multiplication, such that if @ and b are any two real numbers, the sum
of a and b, denoted a + b, and the product of ¢ and b, denoted a - b or ab, are also real
numbers. These operations satisfy properties F1-F6, which are called the field axioms.

Fl. Commutative Laws For all real numbers a and b,
at+b=>b+a and ab = ba.
F2. Associative Laws  For all real numbers a, b, and ¢,
(a+b)y+c=a+b+c) and (ab)c = a(bc).
F3. Distributive Laws For all real numbers a, b, and ¢,
a(b+c¢) =ab+ac and (b+c)a = ba+ ca.

F4. Existence of Identity Elements There exist two distinct real numbers, denoted O and 1,
such that for every real number a,

O+a=a+0=a and l-a=a'l=a.

F5. Existence of Additive Inverses For every real number a, there is a real number,
denoted —a and called the additive inverse of @, such that

at+(—a)=(—a)+a=0.

F6. Existence of Reciprocals For every real number a # 0, there is a real number,
denoted 1/a or a™', called the reciprocal of a. such that

()

All the usual algebraic properties of the real numbers that do not involve order can be
derived from the field axioms. The most important are collected as theorems T1-T16 as
follows. In all these theorems the symbols a, b, ¢, and d represent arbitrary real numbers.

T1. Cancellation Law for Addition 1f a+b = a+ ¢, then b = ¢. (In particular, this
shows that the number 0 of Axiom F4 is unique.)

T2. Possibility of Subtraction Given a and b, there is exactly one x such that a +x = b.
This x is denoted by b — a. In particular, O — a is the additive inverse of a, —a.

‘Adapted from Tom M. Apostol, Calculus, Volume I (New York: Blaisdell, 1961), pp. 13-19.
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T3. b—a = b+ (—a).
T4, —(—a) = a.

TS5. a(b—c¢) = ab — ac.
T6. 0ra = a0 = 0.

T7. Cancellation Law for Multiplication 1f ab = ac and a # 0, then b = ¢. (In particu-
lar, this shows that the number 1 of Axiom F4 is unique.)

T8. Possibility of Division Given a and b with a # 0, there is exactly one x such that
ax = b. This x is denoted by b/a and is called the quotient of » and a. In particular,
1/a is the reciprocal of a.

T9. If a # 0, then b/a = b-a .
T10. Ifa # 0, then (@ )" = a.
T11. Zero Product Property 1f ab = 0,thena = 0 orb = 0.
T12. Rule for Multiplication with Negative Signs
(—a)b = a(—b) = —(ab), (—a)(—b) = ab,

and
ol o, 4
b b —b’
T13. Equivalent Fractions Property
a ac
—=—, ifb#0a > # 0.
b be' | Oand ¢ # 0O

T14. Rule for Addition of Fractions

a .¢ ad + be

s mi——= {f E )
b a bd ifb# O0andd # 0
TI15. Rule for Multiplication of Fractions
a ¢ ac
——=-—_ ifb# 0andd # 0.
b'd bd "
T16. Rule for Division of Fractions
a
/
La® bk0,cn0,andd %0,
¢ be
d

The real numbers also satisfy the following axioms, called the order axioms. It is assumed
that among all real numbers there are certain ones, called the positive real numbers, that
satisfy properties Ord1-Ord3.

Ordl. For any real numbers a and b, if a and b are positive, so are a + b and ab.
Ord2. For every real number a # 0, either a is positive or —a is positive but not both.

Ord3. The number 0 is not positive.
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The symbols <, >, =, and =, and negative numbers are defined in terms of positive numbers.

Definition

Given real numbers a and b,

a < b means b+ (—a) is positive. b>ameansa < b.
a=bmeansa <bora=b. b=ameansa = b.
If a < 0, we say that a is negative.  If @ = 0, we say that a is nonnegative.

From the order axioms Ord1-Ord3 and the above definition, all the usual rules for cal-
culating with inequalities can be derived. The most important are collected as theorems
T17-T27 as follows. In all these theorems the symbols a, b, ¢, and d represent arbitrary
real numbers.

T17. Trichotomy Law  For arbitrary real numbers a and b, exactly one of the three rela-
tions a < b, b < a, or a = b holds.

T18. Transitive Law If a < band b < ¢, then a < c.

TI9. Ifa < b,thena+c < b+c.

T20. If a < b and ¢ > 0, then ac < bc.

T21. If a # 0, then a* > 0.

T22.1>0.

T23. If a < b and ¢ < 0, then ac > bc.

T24. If a < b, then —a > —b. In particular, if a < 0, then —a > 0.
T2S. If ab > 0, then both @ and b are positive or both are negative.
T26. Ifa<cand b <d,thena+b < c+d.

T27. If0<a<cand 0 < b <d, then 0 < ab < cd.

One final axiom distinguishes the set of real numbers from the set of rational numbers. It
is called the least upper bound axiom.

LUB. Any nonempty set S of real numbers that is bounded above has a least upper bound.
That is, if B is the set of all real numbers x such that x = s for every s in S and if B
has at least one element, then B has a smallest element. This element is called the
least upper bound of S.

The least upper bound axiom holds for the set of real numbers but not for the set of ratio-
nal numbers. For example, the set of all rational numbers that are less than \/2 has upper
bounds but not a least upper bound within the set of rational numbers.




Quote any Properties you use from Epp

* Parity property: Theorem 4.5.2 used to stated that any integer is either even or odd

e Zero Product Property P184

e Additional results about even and odd integers p186-187

* Unique Factorisation of Integers Theorem (Fundamental Theorem of Arithmetic)

e Theorem 4.4.2 Divisors of 1 - See task 4

 Theorem 4.7.3 The sum of any rational number and any irrational number is irrational

* Eg Theorem 4.8.1 the square root of 2 is irrational



Properties of rational numbers

* If r and s are any two rational numbers then (r+s)/2 is rational.

8

Proof: Suppose r and s are any two distinct rational numbers. [We must show that iS

rational.]

By definition of rational, » = % and s = g for some integers a, b, ¢, and d with b # 0 and
d # 0.

By substitution and the laws of algebra,

ad + bc
bd ad + be

2 2bd

S e
SH N

r+ S .
2

+
2
Now ad + bc and 2bd are integers because a, b, ¢, and d are integers and products and sums of

integers are integers. And 2bd # 0 by the zero product property.

r==g . . . . . r+s
is a quotient of integers with a nonzero denominator, and so

is rational [as

Hence

was to be shown].



TIS.
T19.
T20.
T21.
T22.
T23.
T24.
T25.
T26.
T27.

Example using properties of inequalities

 For all real numbers a and b if a<b then a < (a+b)/2 < b.

Transitive Law 1fa <band b < ¢, thena < c.
Ifa<b,thenat+c<b+ec.

If a < band ¢ > 0, then ac < be.

If a # 0, then a* > 0.

1 =0.

If a < band ¢ < 0, then ac > bc.

If a < b, then —a = —b. In particular, if a < 0, then —a = 0.

If ab = 0, then both a and b are positive or both are negative.
I[fa<candb <d,thena+b <c+d.
[fO<a<cand 0 < b <d.then 0 < ab < cd.

Proof: Suppose a and b are any real numbers with a < b. By properties T19 and T20 in
Appendix A, we may add b to both sides to obtain

(@a+0b) < 2b,
and we may divide both sides by 2 to obtain
(a+b)/2 <b.
Similarly, since a < b, we may add a to both sides, which gives
2a < (a+0D),

and we may divide both sides by 2, which gives

a+b

a < 9

By combining the inequalities, we have

a+b

9 < b.

a <




Proof by Cases

* Prove that the fourth power of any integer has the form 8m or 8m+1 for some

integer m.

Proof: Suppose n is any integer. By the quotient-remainder theorem with divisor equal to 2,
n = 2q or n = 2q + 1 for some integer q.

Case 1 (n = 2q for some integer q): In this case, by substitution,
n = (29)* = 16¢" = 8(2¢").

Let m = 2¢*. Then m is an integer because it is a product of integers. Hence n* = 8m where
m is an integer.

Case 2 (n =2q+ 1 for some integer q): In this case, by substitution,

n* = (2¢+1)* by substitution

(2g +1)2(2q +1)?

(4¢° + 4+ 1)(4¢° + 4g + 1)

16g* + 164¢% + 49 + 16¢> + 16¢% + 49 + 4¢®> + 4+ 1

16g* + 32¢® +24¢% + 8¢ + 1

= 8(2¢*+4¢®>+3¢>+q)+1 by algebra.

Let m = 2q* + 4¢® + 3¢® + ¢q. Then m is an integer because products and sums of integers are
integers. Hence n* = 8m + 1 where m is an integer.

Conclusion: In both cases n* = 8m or n* = 8m + 1 for some integer m.

Note: If Theorem 4.5.3 is used, it can be shown that for any integer n, n* = 16m or n* =

16m + 1 for some integer m. See the solution to exercise 40 for a partial proof of this result.
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