
Discrete Mathematics and Probability Relations and Modular Arithmetic
Session 2024/25, Semester 1 Week 5 Tutorial 4 with Solution Notes

Retrieve your submissions from Homework 3 in Week 4 as well as the solution notes on the
course website. Compare solutions around the group.

Question 2 from the homework gives three particular functions f, g, h : R → R. Question 3
described what it means for a function to be a section, with a corresponding retraction. Which
of f , g, and h is a section? What are suitable corresponding retractions?

Now work together as a group on each of the following tasks, all of which are based on questions
in the Epp textbook.

Task A

For this task and the next you will need somewhere to draw diagrams: a whiteboard, pen and
paper, an on-screen sketching tool, or similar.

Define relations R and S on R as follows.

R = { (x, y) ∈ R × R | x2 + y2 = 4 }
S = { (x, y) ∈ R × R | x = y }

Graph R, S, R ∪ S, and R ∩ S in the Cartesian plane.

Task B

Let set A = {2, 3, 4, 5, 6, 7, 8} and define a relation T as follows.

x T y ⇐⇒ 3 | (x − y) for any x, y ∈ A

Draw a directed graph of T : a node for every element of A and an arrow from node x to node y
for every x T y.

This is an equivalence relation. How do the properties of reflexivity, symmetry and transitivity
show up in the graph? What are the equivalence classes for the relation T and how do they
stand out in the graph?

Task C

A prime number is an integer greater than 1 whose only positive integer factors are itself and 1.
Define a relation P as follows:

For every m, n ∈ Z, m R n ⇔ ∃a prime number p such that p | m and p | n.

For every m, n ∈ Z, m R n if and only if there is a prime number p such that p | m and p | n.

Is this relation P reflexive? Symmetric? Transitive? For each of these properties construct a
proof or find a counterexample.
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Task D

Use the RSA cipher from Examples 8.4.9 and 8.4.10 in Epp to encrypt the following word using
modulus 55 and public key 3.

HELLO

The relevant pages from the textbook are at the end of these notes.

Now decrypt the following word.
08 05 15

Task E

Use Theorem 8.4.5 from Epp to prove that for all integers a, b, and c, if gcd(a, b) = 1 with a | c
and b | c then ab | c.

Task F

Fermat’s Little Theorem states that if integer p is a prime number and integer a is not a multiple
of p then ap−1 ≡ 1 (mod p). Verify that this result holds for the following cases.

(a) a = 15 and p = 7.

(b) a = 8 and p = 11.
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536  ChaPter 8 ProPerties of relations

finding an inverse Modulo n

a. Find an inverse for 43 modulo 660. That is, find an integer s such that 43s ; 1 (mod 660).

b. Find a positive inverse for 3 modulo 40. That is, find a positive integer s such that
3s ; 1 (mod 40).

solution

a. By Example 8.4.7,

307?43220?660 5 1.

Adding 20?660 to both sides gives that

307?43 5 1120?660.

Thus, by definition of congruence modulo 660,

307?43 ; 1 (mod 660),

so 307 is an inverse for 43 modulo 660.

b. Use the technique of Example 8.4.7 to find a linear combination of 3 and 40 that
equals 1.

Step 1: Divide 40 by 3 to obtain 40 5 3?1311. This implies that 1 5 4023?13.

Step 2: Divide 3 by 1 to obtain 3 5 3?110. This implies that gcd(3, 40) 5 1.

Step 3: Use the result of step 1 to write

3?(213) 5 11 (21)40.

This result implies that 213 is an inverse for 3 modulo 40. In other words, 3?(213) ;
1 (mod 40). To find a positive inverse, compute 40213. The result is 27, and

27 ; 213 (mod 40)

because 272 (213) 5 40. So, by Theorem 8.4.3(3),

3?27 ; 3?(213) ; 1 (mod 40),

and thus by the transitive property of congruence modulo n, 27 is a positive integer that is 
an inverse for 3 modulo 40. ■

RSA Cryptography
At this point we have developed enough number theory to explain how to encrypt and de-
crypt messages using the RSA cipher. The effectiveness of the system is based on the fact 
that although modern computer algorithms make it quite easy to find two distinct large in-
tegers p and q—say on the order of several hundred digits each—that are virtually certain 
to be prime, even the fastest computers are not currently able to factor their product, an 
integer with approximately twice that many digits. In order to encrypt a message using the 
RSA cipher, a person needs to know the value of pq and of another integer e, both of which 
are made publicly available. But only a person who knows the individual values of p and q 
can decrypt an encrypted message.

We first give an example to show how the cipher works and then discuss some of 
the theory to explain why it works. The example is unrealistic in the sense that because 
p and q are so small, it would be easy to figure out what they are just by knowing  

example 8.4.8
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8.4 modular arithmetic with aPPlications to cryPtograPhy 537

their product. But working with small numbers conveys the idea of the system, while 
keeping the computations in a range that can be performed with a hand calculator.

Suppose Alice decides to set up an RSA cipher. She chooses two prime numbers—say, 
p 5 5 and q 5 11—and computes pq 5 55. She then chooses a positive integer e that is 
relatively prime to (p21)(q21). In this case, (p21)(q21) 5 4?10 5 40, so she may 
take e 5 3 because 3 is relatively prime to 40. (In practice, taking e to be small could 
compromise the secrecy of the cipher, so she would take a larger number than 3. However, 
the mathematics of the cipher works as well for 3 as for a larger number, and the smaller 
number makes for easier calculations.)

The number pair (pq, e) is Alice’s public key, which she may distribute widely. Because 
the RSA cipher works only on numbers, Alice also informs people how she will interpret 
the numbers in the messages they send her. Let us suppose that she encodes letters of the 
alphabet in a similar way as was done for the Caesar cipher:

A 5 01, B 5 02, C 5 03, . . . , Z 5 26.

Let us also assume that the messages Alice receives consist of blocks, each of which, for 
simplicity, is taken to be a single, numerically encoded letter of the alphabet.

Someone who wants to send Alice a message breaks the message into blocks, each con-
sisting of a single letter, and finds the numeric equivalent for each block. The plaintext, M, 
in a block is converted into ciphertext, C, according to the following formula:

C 5 Me mod pq. 8.4.5

Note that because (pq, e) is the public key, anyone who has it and knows modular arithme-
tic can encrypt a message to send to Alice.

encrypting a Message using rsa Cryptography

Bob wants to send Alice the message HI. What is the ciphertext for his message?

solution Bob will send his message in two blocks, one for the H and another for the I. 
Because H is the eighth letter in the alphabet, it is encoded as 08, or 8. The corresponding 
ciphertext is computed using formula 8.4.5 as follows:

 C 5 83 mod 55

5 512 mod 55

5 17.

Because I is the ninth letter in the alphabet, it is encoded as 09, or 9. The corresponding 
ciphertext is

 C 5 93 mod 55

5 729 mod 55

5 14.

Accordingly, Bob sends Alice the message: 17 14. ■

To decrypt the message, the decryption key must be computed. It is a number d that is a 
positive inverse to e modulo (p21)(q21). The plaintext M is obtained from the ciphertext 
C by the formula

M 5 Cd mod pq, where the number pair (pq, d) is Alice’s private key. 8.4.6

example 8.4.9
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538  ChaPter 8 ProPerties of relations

Note that because M1kpq ; M (mod pq), M must be taken to be less than pq, as in 
the above example, in order for the decryption to be guaranteed to produce the original 
message. But because p and q are normally taken to be so large, this requirement does not 
cause problems. Long messages are broken into blocks of symbols to meet the restriction 
and several symbols are included in each block to prevent decryption based on knowledge 
of letter frequencies.

Decrypting a Message using rsa Cryptography

Imagine that Alice has hired you to help her decrypt messages and has shared with you the 
values of p and q. Compute Alice’s private key (pq, d) and use the formula M 5 Cd mod pq 
to decrypt the following ciphertext for her: 17 14.

solution Because p 5 5 and q 5 11, (p21)(q21) 5 40, the decryption key d is a posi-
tive inverse for 3 modulo 40. Knowing that you would need this number, we computed it 
in Example 8.4.8(b) and found it to be 27. Thus to decrypt the ciphertext 17, you need to 
compute

M 5 17d mod pq 5 1727 mod 55.

To do so, note that

27 5 16181211.

Next, find the residues obtained when 17 is raised to successively higher powers of 2, up 
to 24 5 16:

 17 mod 55 5 17 mod 55  5 17

 172 mod 55 5 172 mod 55  5 14

 174 mod 55 5 (172)2 mod 55 5 142 mod 55 5 31

 178 mod 55 5 (174)2 mod 55 5 312 mod 55 5 26

 1716 mod 55 5 (178)2 mod 55 5 262 mod 55 5 16

Then use the fact that

1727 5 1716181211 5 1716?178?172?171

to write

 1727 mod 55 5 (1716?178?172?17) mod 55

; f(176 mod 55)(178 mod 55)(172 mod 55)(17 mod 55)g (mod 55)
by Corollary 8.4.4

; (16?26?14?17) (mod 55)

; 99008 (mod 55)

; 8 (mod 55).

Hence 1727 mod 55 5 8, and thus the plaintext of the first part of Bob’s message is 8, or 08. 
In the last step, you find the letter corresponding to 08, which is H. In exercises 14 and 15 
at the end of this section, you are asked to show that when you decrypt 14, the result is 9, 
which corresponds to the letter I, so you can tell Alice that Bob’s message is HI. ■

Figure 8.4.1 illustrates the process of sending and receiving a message using RSA 
cryptography.

example 8.4.10
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8.4 modular arithmetic with aPPlications to cryPtograPhy 539

Bob creates a
plaintext block M.

Alice reads Bob’s
plaintext block M.

Bob sends encrypted
block C to Alice.

Bob uses Alice’s
public key to
encrypt M:
C 5 Me mod pq.

Alice uses her
private key to
decrypt C:
M 5 Cd mod pq.

fiGure 8.4.1 Using RSA cryptography
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Solution Notes

For Homework 3 see the solution notes on the course web pages.

Function f(x) = −x is a bijection, which means it is also a section with its inverse as a retraction.
It also happens to be self-inverse, so is a section for itself. This is a rather unusual case.

Function g(x) = 2x is not a bijection, but we can still find a retraction which has g as a section.
For example, the following:

j(x) =

log2(y) if y > 0
0 if y ≤ 0.

This has (j ◦ g) = IR, the identity on real numbers as log2(2x) = x for all x ∈ R.

Function h(x) = (x3 − x) is not injective and that means it is not a section: there is no
function k : R → R such that (k ◦ h) = IR. To demonstrate this, note that h(−1) = h(0) =
h(1) = 0: if (k ◦ h) was the identity then we would need k(0) to equal −1, 0, and 1 all at the
same time.

Task A

This and other boxed notes are taken from the Instructor’s Manual for the Epp textbook.
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Task B

3
42
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Reflexivity of T appears as self-loops on every node. Symmetry shows up as every arrow having
a reverse arrow. Transitivity is that for any chain of arrows leading in to one another their
composition is also an arrow in the graph.

The equivalence classes are {2, 5, 8}, {3, 6}, and {4, 7}. These appear as connected components
of the graph: groups of nodes where you can get from one to another inside the group by
following arrows, but not from one group to another. For more on these see the sections on
Subgraphs and Connectedness in Chapter 10 of Epp, pages 682–683.

Task C

P is not reflexive : P is reflexive⇔ for every integer n, n P n. By definition of P this means
that for every integer n, ∃ a prime number p such that p | n and p | n. This is false. As a
counterexample, take n = 1. There is no prime number that divides 1.

P is symmetric: [We must show that for all integers m and n, if m P n then n P m.]
Suppose m and n are integers such that m P n. By definition of P this means that there
exists a prime number p such that p | m and p | n. But to say that “p | m and p | n” is
logically equivalent to saying that “p | n and p | m.” Hence there exists a prime number p such
that p | n and p | m, and so by definition of P , n P m.

P is not transitive : P is transitive ⇔ for all integers m, n, and p, if m P n and n P p then
m P p. This is false. As a counterexample, take m = 2, n = 6, and p = 9. Then m P n
because the prime number 2 divides both 2 and 6 and n P p because the prime number 3
divides both 6 and 9, but m is not related to p by P because the numbers 2 and 9 have no
common prime factor.

Task D

The letters in HELLO translate numerically into 08, 05, 12, 12, and 15. By Example 8.4.9, the
H is encrypted as 17. To encrypt E, we compute 53 mod 55 = 15. To encrypt L, we compute
123 mod 55 = 23. And to encrypt O, we compute 153 mod 55 = 20. Thus the ciphertext is
17 15 23 23 20. (In practice, individual letters of the alphabet are grouped together in blocks
during encryption so that deciphering cannot be accomplished through knowledge of frequency
patterns of letters or words.)
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By Example 8.4.10, the decryption key is 27. Thus the residues modulo 55 for 827, 527, and
1527 must be found and then translated into letters of the alphabet. Because 27 = 16+8+2+1,
we first perform the following computations:

51 ≡ 5 (mod 55) 151 ≡ 15 (mod 55)81 ≡ 8 (mod 55)
82 ≡ 9 (mod 55)
84 ≡ 92 ≡ 26 (mod 55)
88 ≡ 262 ≡ 16 (mod 55)

52 ≡ 25 (mod 55) 152 ≡ 5 (mod 55)
54 ≡ 252 ≡ 20 (mod 55) 154 ≡ 52 ≡ 25 (mod 55)
58 ≡ 202 ≡ 15 (mod 55) 158 ≡ 252 ≡ 20 (mod 55)

816 ≡ 162 ≡ 36 (mod 55) 516 ≡ 152 ≡ 5 (mod 55) 1516 ≡ 202 ≡ 15 (mod 55)

Then we compute

827 mod 55 = (36· 16· 9· 8) mod 55 = 2,

527 mod 55 = (5· 15· 25· 5) mod 55 = 25,

1527 mod 55 = (15· 20· 5· 15) mod 55 = 5.

Finally, because 2, 25, and 5 translate into letters as B, Y, and E, we see that the message is
BYE.

Task E

Proof: Suppose a, b, and c are integers such that gcd(a, b) = 1, a | c, and b | c. We will show
that ab | c.

By Corollary 8.4.6 (or by Theorem 8.4.5), there exist integers s and t such that as + bt = 1.

Also, by definition of divisibility, c = au = bv, for some integers u and v. Hence, by substitu-
tion,

c = asc + btc = as(bv) + bt(au) = ab(sv + tu).

But sv + tu is an integer, and so, by definition of divisibility, ab | c [as was to be shown].

Task F

a. When a = 15 and p = 7,

ap−1 = 156 = 11390625 ≡ 1 (mod 7) because 11390625− 1 = 7 · 1627232.

b. When a = 8 and p = 11,

ap−1 = 810 = 1073741824 ≡ 1(mod 11) because 1073741824− 1 = 11· 97612893.

9


