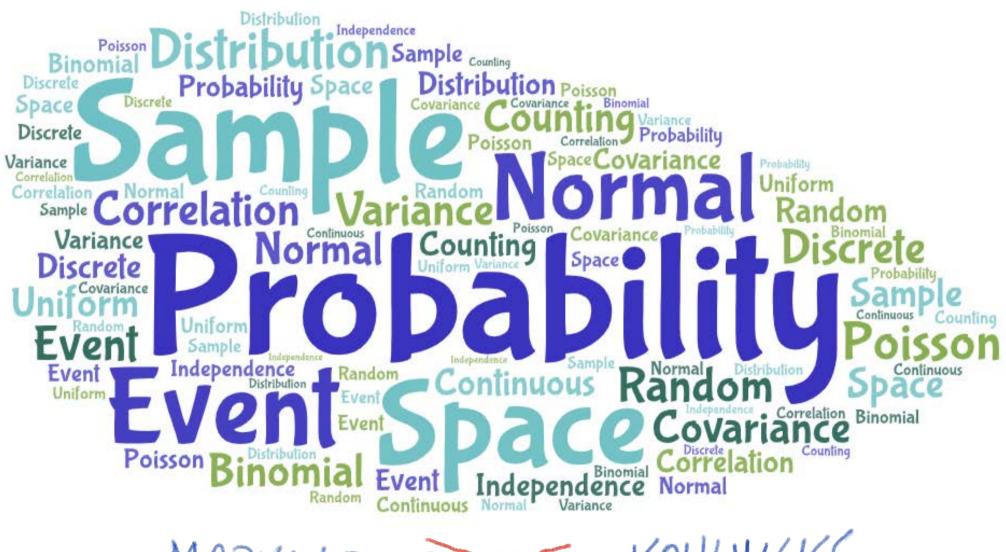
Discrete Mathematics and Probability Week 7



MARKULF

KOHLWEISS

Springer Texts in Statistics Matthew A. Carlton Jay L. Devore **Probability with Applications in** Engineering, Science, and **Technology** Second Edition **EXTRAS ONLINE** 2 Springer woodlap.com code: CMBUZS

E E E

Topics

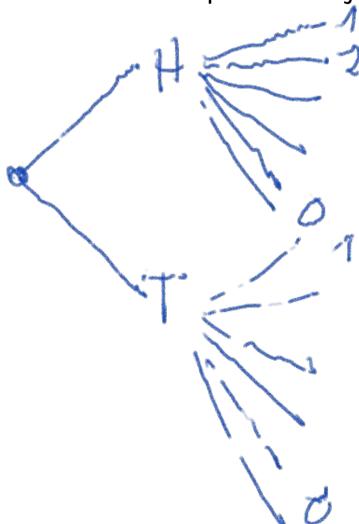
- ► Counting: thinking algorithmically
- Events: what could happen in principle
- Experiments: how can events interact
- Probability: quantifying what could happen

Counting

Counting

Basic principles of combinatorics:

- ▶ if an experiment has n outcomes; and another experiment has m outcomes,
- ightharpoonup then the two experiments jointly have $n \cdot m$ outcomes.



Definition

Let $H = \{h_1, h_2, \dots, h_n\}$ be a set of n different objects. The permutations of H are the different orders in which you can write all of its elements.

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of n different objects. The permutations of H are the different orders in which you can write all of its elements.

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of n different objects. The permutations of H are the different orders in which you can write all of its elements.

Permutations with repetitions

Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1, n_2 of $h_2, \dots n_r$ of h_r . The *permutations with repetitions* of H are the different orders in which you can write all of its elements.

Permutations with repetitions

Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1 , n_2 of h_2 , ... n_r of h_r . The *permutations with repetitions* of H are the different orders in which you can write all of its elements.

not all elements are different have a Little think! Maybe more than a little think

Permutations with repetitions

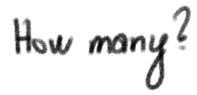
Definition

Let $H = \{h_1 \dots h_1, h_2 \dots h_2, \dots, h_r \dots h_r\}$ be a set of r different types of repeated objects: n_1 many of h_1 , n_2 of h_2 , ... n_r of h_r . The *permutations with repetitions* of H are the different orders in which you can write all of its elements.

not all elements are different
have a little think! Maybe more than a little think

n! n=n+n2--nr

Definition



Definition

Definition

How many?
Example: top 3 in house vace
$$\{A,B,C,D,E\}$$

e.g. (E,B,A)

$$\frac{5!}{2!} = 60$$

Definition

How many?
$$P_{n,k} = \frac{n!}{(n-k)!}$$

Example: top 3 in house vace $\{A,B,C,D,E\}$
e.g. (E,B,A)

$$\frac{5!}{2!} = 60$$

k-Permutations with repetitions

Definition

Let $H = \{h_1, \dots, h_2, \dots, h_r, \dots\}$ be a set of r different types of repeated objects, each of infinite supply. The k-permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H.

Again set with repealed objects, but now pack of infinite supply. $26.26.26.26 = 26^3$

k-Permutations with repetitions

Definition

Let $H = \{h_1, \ldots, h_2, \ldots, h_r, \ldots\}$ be a set of r different types of repeated objects, each of infinite supply. The k-permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H.

Again sed with repealed objects, but now oach of infinite supply.

Example: #3-Letter words of Letters English Alphabet = 26=201616
17576

k-Permutations with repetitions

Definition

Let $H = \{h_1, \dots, h_2, \dots, h_r, \dots\}$ be a set of r different types of repeated objects, each of infinite supply. The k-permutations with repetitions of H are the different orders in which one can write an ordered sequence of length k using the elements of H.

Again sed with repealed objects, but now oach of infinite supply.

Example: #3-Letter words of letters English Alphabet = 26=261616

#k-bit chings = 2k

Definition

Let $H = \{h_1, h_2, \dots, h_n\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

Definition

Let $H = \{h_1, h_2, \dots, h_n\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

Hormany? A, B, C, D, C, H.

50-

Definition

Let $H = \{h_1, h_2, \dots, h_n\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

Hornmany?
$$C_{n,k} = \binom{n}{k!} = \frac{n!}{k!(n-k)!}$$
"bhomist coefficient" $C_{n,k} = \frac{P_{n,k}}{k!}$

Definition

Hor many?
$$C_{n,k} = {n \choose k} = \frac{n!}{k!(n-k)!}$$
"bhomial coefficient" $C_{n,k} = \frac{P_{n,k}}{k!}$
Example: # ways to four committee of 5 ctubents from class of 30

Definition

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of n different objects. The k-combinations of H are the different ways in which one can pick k of its elements without order.

Hor many?
$$C_{n,k} = {n \choose k} = \frac{n!}{k!(n-k)!}$$
"bhomial coefficient" $C_{n,k} = \frac{P_{n,k}}{k!}$

Example: # ways to four committee of 5 ctubents from class of 30
$$= {30 \choose 5} = \frac{30!}{5!25!} = 142506$$

Non you know how to count.

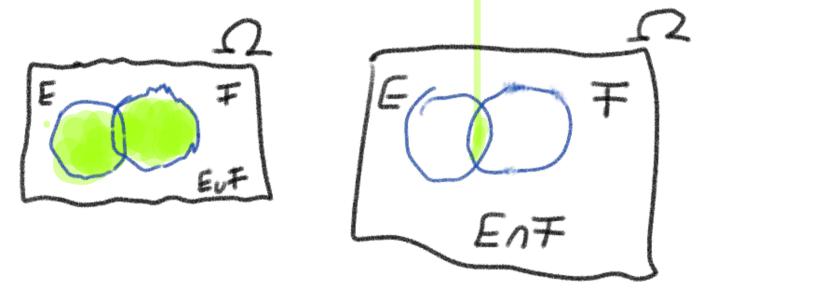
A mathematical model for experiments:

- ightharpoonup Sample space: the set Ω of all possible outcomes
- ▶ An *event* is a collection¹ of possible outcomes: $E \subseteq \Omega$
- ▶ Union $E \cup F$ and intersection $E \cap F$ of events make sense

¹Sometimes Ω is too large, and not all subsets are events. Ignore this now.

A mathematical model for experiments:

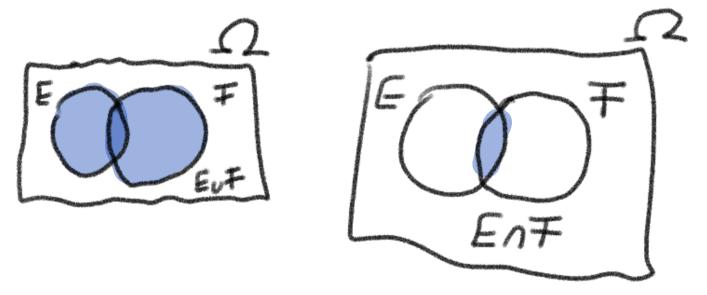
- ightharpoonup Sample space: the set Ω of all possible outcomes
- ightharpoonup An event is a collection¹ of possible outcomes: $E \subseteq \Omega$
- ▶ Union $E \cup F$ and intersection $E \cap F$ of events make sense



¹Sometimes Ω is too large, and not all subsets are events. Ignore this now.

A mathematical model for experiments:

- ightharpoonup Sample space: the set Ω of all possible outcomes
- ightharpoonup An event is a collection¹ of possible outcomes: $E \subseteq \Omega$
- ▶ Union $E \cup F$ and intersection $E \cap F$ of events make sense



¹Sometimes Ω is too large, and not all subsets are events. Ignore this now.

Experiment 2 vand 5 pace Evants Will it lavoin 2r, n3, 5+3

Expariment	Somple Space	Even+
Will it vain?	12=Er,n3	og. E= 2r}
5-house race	CZ=pounulalies EA,B,L,D,E}	e.g. E= &B wins} F= &E wins, A thirds

Experiment	Sample Space	Exent	
Will it vain?	12=Er,n3	og. E= Er}	
5-house race	12= permulaliss	e.g. E= &Bu	vins 3
flip 2 coins	E A,B,C,D,ES 12=S(H,H),(H,T) (T,H),(H,H)	e.g. E = cois	; different
) (1,4),U1,4) 3	- 2CH	,ייי ני,חין

Expariment	Sample Space	Exant
will it vair?	12=Er,n3	0.9. E= 2+3
5-house valle	CZ=permulaliss	e.g. E= &B wins} F= &E wins, A thirds
flip 2 coins	12=2(H,H),(H,t) (T,H),(H,H)	e.g. E = coins different = 5(H,T), (T,H)}
roll dice undild	2={cequerced 1-5 wither	T= of load one head = S(UT) (TU) (UH)?

Union and intersection

Union

or

Union $E \cup F$ of events E and F means E and F. Infinite union $\bigcup_i E_i$ of events E_i means at least one of the E_i 's.

Intersection

Intersection $E \cap F$ of events E and F means E and F. Infinite intersection $\bigcap_i E_i$ of events E_i means each of the E_i 's.

Definition

If $E \cap F = \emptyset$, we call events E and F mutually exclusive. If events E_1, E_2, \ldots satisfy $E_i \cap E_j = \emptyset$ whenever $i \neq j$, we call them mutually exclusive. They cannot happen at the same time.

Inclusion and implication

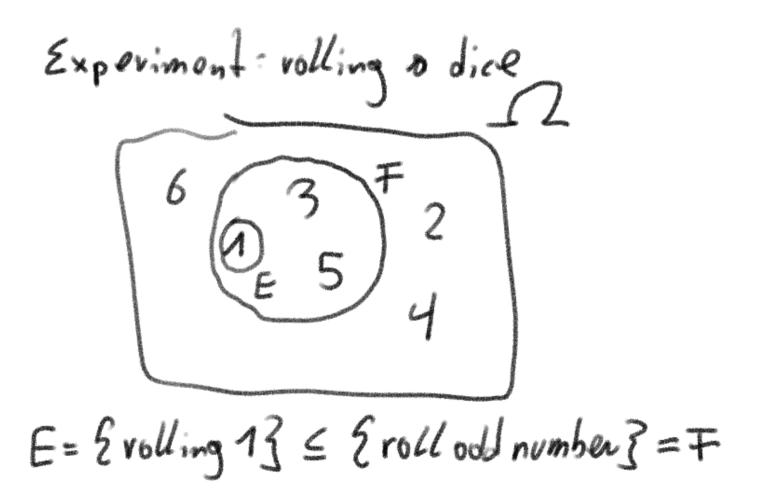
Remark

If the event E is a *subset* of the event F, written $E \subseteq F$, then the occurrence of E implies that of F.

Inclusion and implication

Remark

If the event E is a *subset* of the event F, written $E \subseteq F$, then the occurrence of E implies that of F.



Complementarity

Definition

The *complement* of an event E is $E^c = \Omega - E$.

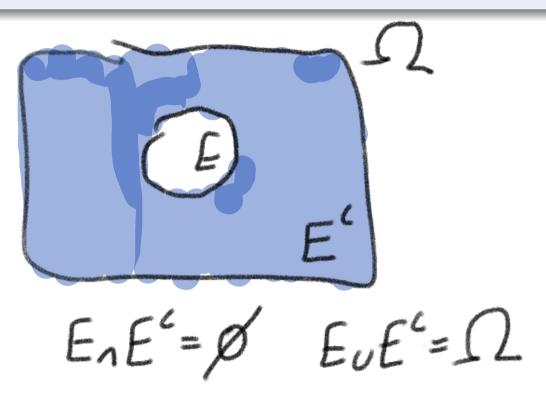
This is the event that *E* does *not* occur.

Complementarity

Definition

The *complement* of an event E is $E^{c} = \Omega - E$.

This is the event that *E* does *not* occur.



Experiments

Experiments

How events can interact:

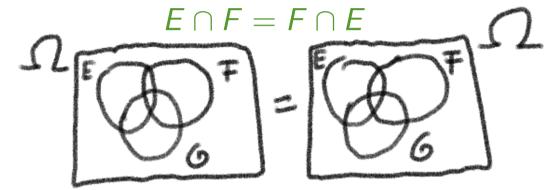
- Commutativity
- Distributivity
- Associativity
- ▶ De Morgan's Law

Commutativity: $E \cup F = F \cup E$ $E \cap F = F \cap E$

Associativity:
$$E \cup (F \cup G) = (E \cup F) \cup G$$

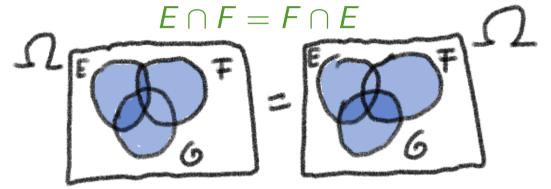
 $E \cap (F \cap G) = (E \cap F) \cap G$

▶ Commutativity: $E \cup F = F \cup E$



Associativity: $E \cup (F \cup G) = (E \cup F) \cup G$ $E \cap (F \cap G) = (E \cap F) \cap G$ $G \cap F \cap G = (E \cap F) \cap G$

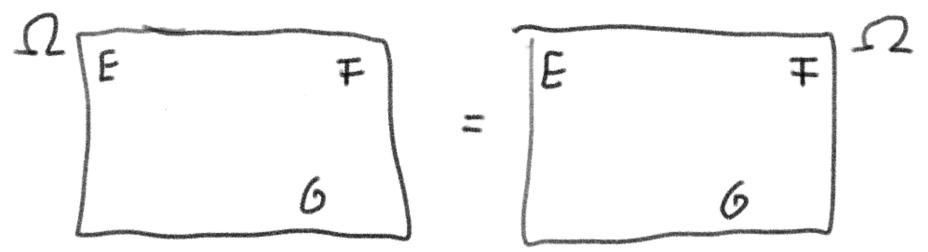
▶ Commutativity: $E \cup F = F \cup E$

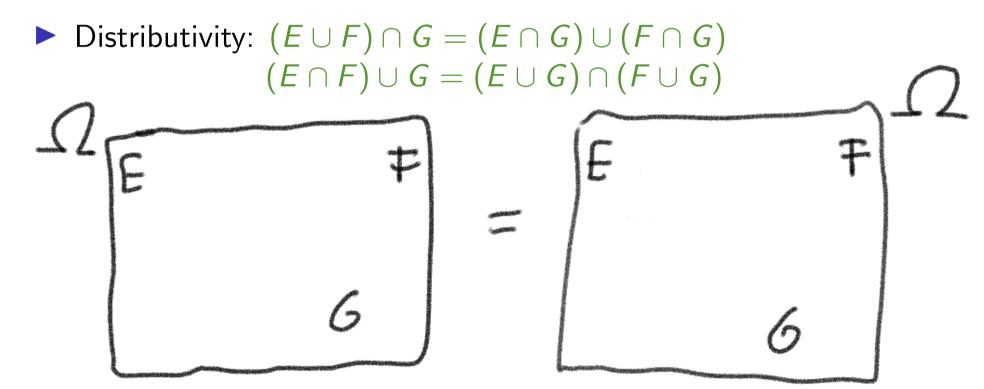


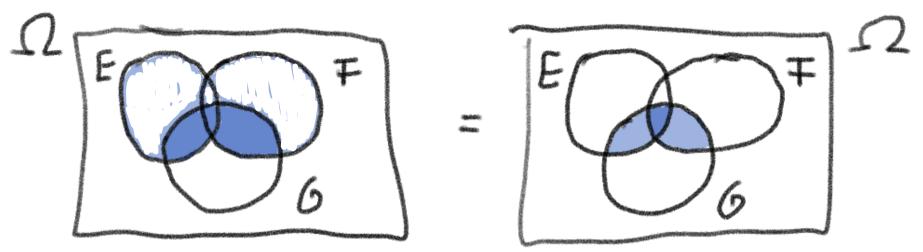
Associativity: $E \cup (F \cup G) = (E \cup F) \cup G$ $E \cap (F \cap G) = (E \cap F) \cap G$ $A \cap F = F \cap F \cap G$

Distributivity:
$$(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$$

 $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$







Distributivity: $(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$ $(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$

De Morgan's law

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c$

De Morgan's law

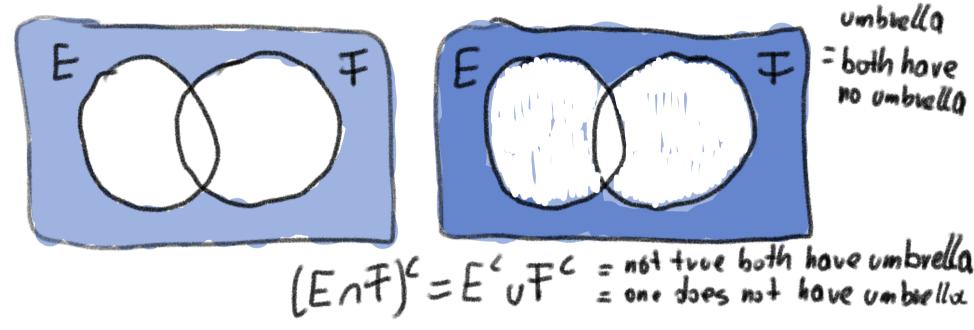
E = you have umbuella F = S have umbuella

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c = not true that one of us has umbuella in umbuella in umbuella$

De Morgan's law

E = you have umbielda
F = S have umbielda

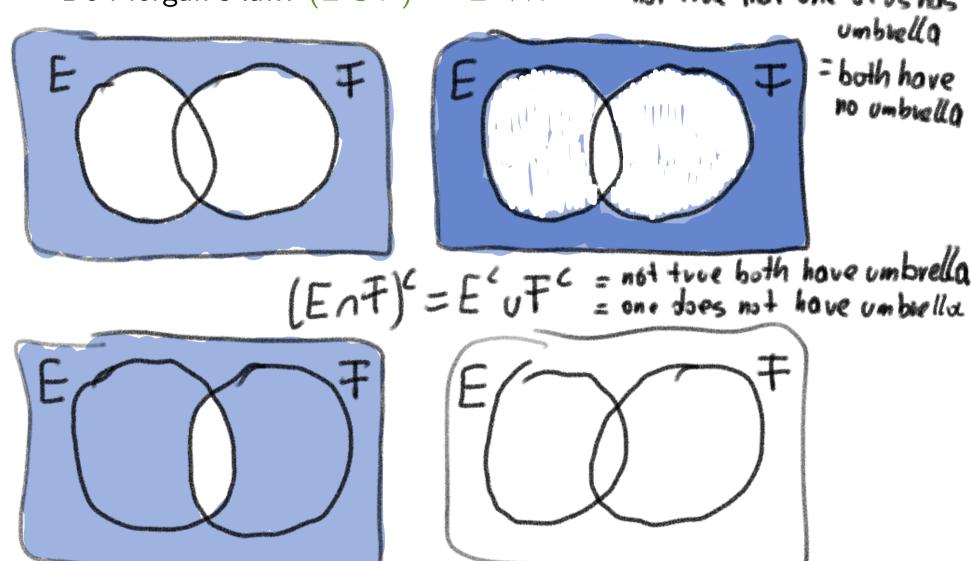
▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c = not true that one of us has$



De Morgan's law E= you have umbula

F= 3 have umbula

▶ De Morgan's law: $(E \cup F)^c = E^c \cap F^c = not true that one of us has$



Probability

So far boen structural now we will attach numbers to things

- Definition by axioms
- ► How to compute probabilities
- Inclusion-exclusion principle
- Equally likely outcomes

Axioms of probability

Definition

The probability \mathbf{P} on a sample space Ω assigns numbers to events of Ω in such a way that:

- 1. the probability of any event is non-negative: $P(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

$$\mathbf{P}\big(\bigcup_i E_i\big) = \sum_i \mathbf{P}(E_i)$$

Axioms of probability

Definition

P is a function that catisfies 3 axioms

The probability \mathbf{P} on a sample space Ω assigns numbers to events of Ω in such a way that:

- 1. the probability of any event is non-negative: $P(E) \ge 0$;
- 2. the probability of the sample space is one: $P(\Omega) = 1$;
- 3. for countably many *mutually exclusive* events E_1, E_2, \ldots :

$$\mathbf{P}\big(\bigcup_i E_i\big) = \sum_i \mathbf{P}(E_i)$$

finite
$$P(E_1 \cup \dots \cup E_n) = P(E_1) + \dots + P(E_n)$$

countably infinite $P(E_1 \cup E_2 \cup E_3 \cup \dots) = P(E_1) + P(E_2) + P(E_3) + \dots$

Proposition
$$P(E) = 1 - P(E^c)$$

For any event, $P(E^c) = 1 - P(E)$.

a)
$$E \wedge E' = \emptyset$$
 thus by axiom 3 $P(E) + P(E') = P(E \cup E') = P(\Omega)$
2) $P(\Omega) = 1$ by axiom 2 $= 1$

$$P(\emptyset) = P(\Omega^2) = 1 - P(\Omega) = 1 - 4 = 0$$

Corollary

We have $P(\emptyset) = P(\Omega^c) = 1 - P(\Omega) = 1 - 1 = 0$.

For any event, $P(E) = 1 - P(E^c) \le 1$.

Proposition

For any event, $P(E^c) = 1 - P(E)$.

Proof: E and E' one mutually exclusive
$$E_1E^C = \emptyset$$

soby oxiom 3 $P(E) + P(E^C) = P(I2)$
by oxiom 2 = 1

Corollary

- **√**) We have $P(\emptyset) = P(Ω^c) = 1 P(Ω) = 1 1 = 0$.
- For any event, $P(E) = 1 P(E^c) \le 1$.

Proposition

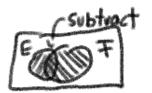
For any two events, $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

Proposition (Boole's inequality)

For any events E_1, E_2, \ldots, E_n :

$$\mathbf{P}\left(\bigcup_{i=1}^n E_i\right) \leq \sum_{i=1}^n \mathbf{P}(E_i).$$

skipping post by induction



Proposition

For any two events, $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

Proposition (Boole's inequality)

For any events E_1, E_2, \ldots, E_n :

$$\mathbf{P}\left(\bigcup_{i=1}^n E_i\right) \leq \sum_{i=1}^n \mathbf{P}(E_i).$$

skipping prox by induction initially

Inclusion-exclusion

Proposition

For any events:

$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$

$$- P(E \cap F) - P(E \cap G) - P(F \cap G)$$

$$+ P(E \cap F \cap G).$$

Inclusion-exclusion

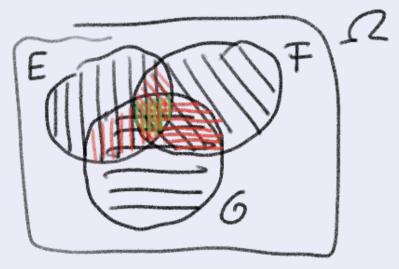
Proposition

For any events:

$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$

$$- P(E \cap F) - P(E \cap G) - P(F \cap G)$$

$$+ P(E \cap F \cap G).$$



Inclusion-exclusion

Proposition

For any events:

$$-\mathbf{P}(E\cap F) - \mathbf{P}(E\cap G) - \mathbf{P}(F\cap G) \\ + \mathbf{P}(E\cap F\cap G).$$

$$\mathbf{P}(E_1\cup E_2\cup\cdots\cup E_n) = \sum_{1\leq i\leq n}\mathbf{P}(E_i) \\ -\sum_{1\leq i_1< i_2\leq n}\mathbf{P}(E_{i_1}\cap E_{i_2}) \\ +\sum_{1\leq i_1< i_2< i_3\leq n}\mathbf{P}(E_{i_1}\cap E_{i_2}\cap E_{i_3}) \\ -\cdots \\ +(-1)^{n+1}\mathbf{P}(E_1\cap E_2\cap\cdots\cap E_n).$$

 $P(E \cup F \cup G) = P(E) + P(F) + P(G)$


```
In a sports club,

36 members play tennis, 22 play tennis and squash,
28 play squash,
12 play tennis and badminton,
18 play badminton,
9 play squash and badminton,
4 play tennis, squash and badminton.

What is probably that a vandom member
How many plays at least one of these games?
```

Example with N members

In a sports club,

36 members play tennis, 22 play tennis and squash,

28 play squash, 12 play tennis and badminton,

18 play badminton, 9 play squash and badminton,

4 play tennis, squash and badminton.

What is probability that a vandom member How many plays at least one of these games?

$$P(T_{\nu} \leq_{\nu} B) = P(T) + P(S) + P(B)$$

$$-P(T_{\nu} \leq_{\nu}) - P(T_{\nu} B) - P(S_{\nu} B)$$

$$+ P(T_{\nu} \leq_{\nu} B)$$

$$= \frac{36}{N} + \frac{28}{N} + \frac{18}{N} - \frac{22}{N} - \frac{12}{N} - \frac{9}{N} + \frac{43}{N} = \frac{43}{N}$$

Proposition

If
$$E \subseteq F$$
, then $P(F - E) = P(F) - P(E)$.

Corollary

If $E \subseteq F$, then $P(E) \leq P(F)$.

Equally likely outcomes

The return of counting The last thing before we all go home

Finite sample space, $|\Omega| = N < \infty$, has special important case where each experiment outcome has equal probability:

$$\mathbf{P}(\omega) = \frac{1}{N}$$
 for all $\omega \in \Omega$

Definition

Outcomes $\omega \in \Omega$ are also called *elementary events*.

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 7?

What's wrong with this solution? "The number 7 is one out of the possible values $2, 3, \ldots, 12$ for the sum, and the answer is $\frac{1}{11}$."

what is wrong will the answer?

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 7?

What's wrong with this solution? "The number 7 is one out of the possible values $2, 3, \ldots, 12$ for the sum, and the answer is $\frac{1}{11}$."

sums are not equally likely:
e.g. 12 is only 1 and out of 30. What is wrong will the answer?

Example

Rolling two dice, what is the probability that the sum of the numbers shown is 7?

What's wrong with this solution? "The number 7 is one out of the possible values $2, 3, \ldots, 12$ for the sum, and the answer is $\frac{1}{11}$."

Summary

- ► Counting: permutations, combinations, repetitions
- Events: sample space, union, intersection, complement
- Experiments: distributivity, De Morgan's law
- Probability: axioms, how to compute, equally likely outcomes