Discrete Mathematics and Probability
Week 7

o Independence
Jj.L"°:‘:‘:"Dls’[rubuhonSamplecmg
Probabuhtg Space l Distribution poisson

Covariance Cova rianc Binomial

0 u htl n 9 Probabdntq

Discrete

Poisson Correlation

P SpaceCovanance feres
Varlance orma éandom

Vanance
S COrrelatlon
Variance onfinuous Count r';°‘”°" Covariance Binomial
Discrele Norma ' 9 SP“‘" o g Discr pebten
Unifeen ro | Sample
Event BB\ MPoisson

EUX?ELE lndepend‘esqfu% Random fqor” nu @u§ R ormadom ' 5P§E"é°“’
o Correlalion Binomi
Venl-Space cornae—

Poisson Cottelation “ "™
Binomial Event lndependéﬁ’&a' Normal

Random (0 -tinuous Non Variance

MARKY[F  Chastednen KOHL WZ(SS

1/1



Matthew A. Carlton
Jay L. Devore

Probability with
Applications in

Engineering,
Science, and
Technology

EXTRAS ONLINE

WQOC(-UIP.COM
code: ¢ }/IBUZS

B!

ARt AR I AN

(’\

1/1



Topics

» Counting: thinking algorithmically
» Events: what could happen in principle

» Experiments: how can events interact

» Probability: quantifying what could happen
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Counting
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Counting wodclap

Basic principles of combinatorics:

» if an experiment has n outcomes;
and another experiment has m outcomes,

» then the two experiments jointly have n - m outcomes.
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Permutations Ww0Ocla P

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The
permutations of H are the different orders in which you can write

all of its elements. )
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Permutations with repetitions

Definition
Let H ={hy...hi, ho...ho, ..., h,...h,} be a set of r different

types of repeated objects: 11 many of hy, no of ho, ... n, of h,.
The permutations with repetitions of H are the different orders in

which you can write all of its elements. )

: eH VDB G
[@O@ 7
O O D @

g

» -~

6/1



Permutations with repetitions s queei N

Definition
Let H ={hy...hi, ho...ho, ..., h,...h,} be a set of r different
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The permutations with repetitions of H are the different orders in

which you can write all of its elements. )
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Permutations with repetitions

Definition
Let H:{hl...hl, hy...ho, ..., hr...hr} be a set of r different
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k-Permutations

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The

k-permutations of H are the different ways in which one can pick
and write k of its elements of / in order.

Hmu manz?
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k-Permutations

Definition
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k-Permutations

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The

k-permutations of H are the different ways in which one can pick
and write k of its elements of / in order.

How mong?

Example: 4op 3 = hovie vace GA,8,(D,E%
2.3. (E,B,A)
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k-Permutations
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k-Permutations with repetitions Wooclap

Definition

Let H=1{hi...., ho.... ..., h, ...} be aset of r different types
of repeated objects, each of infinite supply. The k-permutations
with repetitions of H are the different orders in which one can
write an ordered sequence of length k using the elements of /. )
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k-Permutations with repetitions

Definition
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k-Permutations with repetitions

Definition
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k-Combinations

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The

k-combinations of H are the different ways in which one can pick k
of its elements without order.

y
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k-Combinations

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The

k-combinations of H are the different ways in which one can pick k
of its elements without order.

y

I
Hon-mnﬁ2 qu“((“)) k! (n -k)’

’buaﬂ‘.‘( (30@¢“ Cﬂk P L

9/1



k-Combinations WQoZLap

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The

k-combinations of H are the different ways in which one can pick k
of its elements without order.
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k-Combinations

Definition
Let H = {hy, ho, ..., h,} be a set of n different objects. The

k-combinations of H are the different ways in which one can pick k
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Events
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Events

A mathematical model for experiments:
» Sample space: the set () of all possible outcomes
» An event is a collection! of possible outcomes: £ C O

» Union E U F and intersection £ (M F of events make sense

'Sometimes () is too large, and not all subsets are events. Ignore this now.
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Examples
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Examples
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Examples
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Union and intersection

Union

or
Union E U F of events £ and [ means E ared F.
Infinite union | J. £; of events £, means at least one of the E;'s.

Intersection

Intersection E M F of events £ and  means £ and F.
Infinite intersection [ ). £; of events £, means each of the E;'s.

Definition
If ENF = (), we call events £ and F mutually exclusive.

If events £, Eo. ... satisfy E; (1 E; = () whenever / # j, we call
them mutually exclusive. They cannot happen at the same time.

4
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Inclusion and implication

Remark

If the event E is a subset of the event F, written £ C F,
then the occurrence of £ implies that of F.
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Inclusion and implication

Remark
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Complementarity

Definition
The complement of an event E is £ @ E.
This is the event that £ does not occur.
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Complementarity

Definition
The complement of an event £ is £ = () — E.
This is the event that £ does not occur.
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Experiments
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Experiments

How events can interact:
» Commutativity
» Distributivity
» Associativity
» De Morgan's Law
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Properties of events

» Commutativity: EUF = FUE
ENF=FNE

> Associativity: EU(FUG) = (
EN(FNG)=(ENF)NG
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Properties of events
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Properties of events
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Properties of events

» Distributivity: (EUF)NG=(ENG)J(FNG)
(ENF)UG=(EUG)N(FUG)
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Properties of events
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Properties of events
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De Morgan's law

» De Morgan's law: (E U F)© = E“N F©
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De Morgan's law ~ E-= W hove ymbwedg

F= have ymbwda
» De Morgan’s law: (E U F)C ESNFS = nod dvu hol ome o% vg hog
vmbied(g
= both have

P umbiel(()
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Probability

Co fav boen slvulwo[,
now we unil &Naﬂ. numloavé lo %mjs

» Definition by axioms
» How to compute probabilities
» Inclusion-exclusion principle

» Equally likely outcomes

21/1



Axioms of probability

Definition
The probability P on a sample space () assigns numbers to events
of (2 in such a way that:

1. the probability of any event is non-negative: P(E£) > 0;

2. the probability of the sample space is one: P({2) = 1;

3. for countably many mutually exclusive events £, E», .. .

P(U Ei) = Z P(Ei)
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Axioms of probability

Definition Pic o Cunction dhol caticline 3 axiome

The probability P on a sample space () assigns numbers to events
of €2 in such a way that:

1. the probability of any event is non-negative: P(E£) > 0;
2. the probability of the sample space is one: P({2) = 1;

3. for countably many mutually exclusive events £, E», .. .

P(U Ei) = Z P(Ei)
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How to compute probabilities

Proposition P{é) == P(EC)

For any event, P(E“) =1 — P(E). \

) EnES=tf Hhsly avomd PLEWP(EY: PleL]-P(02)

s - ,1

9) P(LQ)=4 by Biem 2
P(a) = P(_(Zé)" /[._P(_Q):__/(__,; =0

Corollary

We have P(0)) =P(Q)=1-P(Q)=1-1=0.
For any event, P(E) =1 — P(E°) < 1.

>0
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How to compute probabilities

Proposition
For any event, P(E) =1 — P(E).

Proo€: E ondl E° ave mubually exclisiug E,,ch¢
Gob)/ oxiom 3 P(e)+P(gc)= P(L2)
by wemg =1

Corollary

4) We have P(0)) =P(Q°)=1-P(Q)=1-1=0.
2) For any event, P(E) =1 —P(E°) < 1.
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How to compute probabilities

Proposition
For any two events, P(E UF) =P(E)+ P(F)—P(ENF). l

Proposition (Boole’s inequality) |

For any events £, E>, ..., E,:

P (U E,-) < Z P(E).
=1 =1

ckigpirs pok by Wlukor
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Subh

How to compute probabilities A"

Proposition
For any two events, P(E UF) =P(E)+P(F)—P(ENF). l

Proposition (Boole’s inequality)

For any events £, E>, ..., E,:
P (U E,-) <) P(E).
=1 =1
Gb-iwnrs Pw:( l)y mi]inar :»2’ ibﬂj
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Inclusion-exclusion
Proposition |

For any events:
P(EUFUG)=P(E)+P(F)+ P(G)

—P(ENF)—P(ENG)—P(FNG)
+P(ENFNG).
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Inclusion-exclusion

Proposition

For any events:

P(EUFUG)=P(E)+P(F)+ P(G)
—P(ENF)—P(ENG)—-P(FNG)
+P(ENFNG).

(2
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Inclusion-exclusion

Proposition

For any events:

P(EUFUG)=P(E)+P(F)+ P(G)

—P(ENF)—P(ENG)—P(FNG)

+P(ENFNG).

PEEUEU---UE,)= > P(E)

1<i<n

- Y  P(EynN

1<in<ib<n

Eié)

+ )  P(E,NE,NE)

1<i<ir<iz<n

+—(—1)”+1P(E1erQ(W---F1E5)

ol $0 way op

o 1
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EFxam P le o Lo P

E |
xample w}lﬂskjﬂe",”"’e

In a sports club,

36 members play tennis, 22 play tennis and squash,
28 play squash, 12 play tennis and badminton,

18 play badminton, O play squash and badminton,
4 play tennis, squash and badminton.

Wlﬁl P pva‘aa}n[; thot a vano(om membpu
la{cat least one of these games? )
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Example

E I
xample w‘glﬂ»ﬂﬂe"‘l""e

In a sports club,

36 members play tennis, 22 play tennis and squash,

28 play squash, 12 play tennis and badminton,
18 play badminton, O play squash and badminton,

4 play tennis, squash and badminton.

W‘vl s pvalfnlh[ thot a vana(am membpu
at least one of these games?

P(TySuR)= PT)+P($)+P(R)
~P(Th$)-P(T,R)-P($1R)
+P(T,S 4 R)

=36,28 18 22 12. 3,4 R
v U U NN X/“Nw/\/
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How to compute probabilities

Proposition

If EC F, then P(F — E) = P(F) — P(E). \
Corollary

If EC F, then P(E) < P(F). \
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Equally likely outcomes
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The return of counting T (o<t 44-;.3 M?n ‘"fi'f[&‘zh’é” 20
Woln 0 <

Finite sample space, — N < o0, has special important case
where each experiment outcome has equal probability:

1
Plw)=— for all w € 2
N
Definition
Outcomes w € () are also called elementary events.
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Example

Example

Rolling two dice, what is the probability that the sum of the
numbers shown is 77

y

What's wrong with this solution? “The number 7 is one out of the

possible values 2,3, ...,12 for the sum, and the answer is %

w‘ol s w"’j Wi Y ansawv.z
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Example

Example

Rolling two dice, what is the probability that the sum of the
numbers shown is 77

y

What's wrong with this solution? “The number 7 is one out of the
1 n

possible values 2,3, ...,12 for the sum, and the answer is 17 -
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Example

Example

Rolling two dice, what is the probability that the sum of the
numbers shown is 77

y

What's wrong with this solution? “The number 7 is one out of the

possible values 2,3, ..., 12 for the sum, and the answer is 1—11

Symes are mﬁ @Qbﬁ([(j éf‘i[ ?é Ulla'l s wwoj w?& "& answar.z

es. 12 « O"IJ 4 o
(2= L6, 1 564,2,...,6f§
E= aumic 72500 ivi=T8=5(16),(25)34) (43),
6 £ _ 4 o (5E2)46)¢
P(E)= % -5
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Summary

» Counting: permutations, combinations, repetitions
» Events: sample space, union, intersection, complement

» Experiments: distributivity, De Morgan's law

» Probability: axioms, how to compute, equally likely outcomes
y
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