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Topics

I Counting: thinking algorithmically

I Events: what could happen in principle

I Experiments: how can events interact

I Probability: quantifying what could happen
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Counting
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Counting

Basic principles of combinatorics:

I if an experiment has n outcomes;
and another experiment has m outcomes,

I then the two experiments jointly have n ·m outcomes.
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Permutations

Definition

Let H = {h1, h2, . . . , hn} be a set of n di↵erent objects. The
permutations of H are the di↵erent orders in which you can write
all of its elements.
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Permutations with repetitions

Definition

Let H = {h1 . . . h1, h2 . . . h2, . . . , hr . . . hr} be a set of r di↵erent
types of repeated objects: n1 many of h1, n2 of h2, . . . nr of hr .
The permutations with repetitions of H are the di↵erent orders in
which you can write all of its elements.
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k-Permutations

Definition

Let H = {h1, h2, . . . , hn} be a set of n di↵erent objects. The
k-permutations of H are the di↵erent ways in which one can pick
and write k of its elements of H in order.

7 / 1

How
many



k-Permutations

Definition

Let H = {h1, h2, . . . , hn} be a set of n di↵erent objects. The
k-permutations of H are the di↵erent ways in which one can pick
and write k of its elements of H in order.

7 / 1

How
many

Example top ii horse race A B CD E

EE Is if



k-Permutations

Definition

Let H = {h1, h2, . . . , hn} be a set of n di↵erent objects. The
k-permutations of H are the di↵erent ways in which one can pick
and write k of its elements of H in order.

7 / 1

How
many

Example top3 in house race A B CD E
e g E B A

60



k-Permutations

Definition

Let H = {h1, h2, . . . , hn} be a set of n di↵erent objects. The
k-permutations of H are the di↵erent ways in which one can pick
and write k of its elements of H in order.

7 / 1

How
many Pn.kyn.in

in It

Example top3 in house race A B CD E
e g E B A

60



k-Permutations with repetitions

Definition

Let H = {h1 . . . , h2 . . . , . . . , hr . . . } be a set of r di↵erent types
of repeated objects, each of infinite supply. The k-permutations

with repetitions of H are the di↵erent orders in which one can
write an ordered sequence of length k using the elements of H.
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k-Combinations

Definition

Let H = {h1, h2, . . . , hn} be a set of n di↵erent objects. The
k-combinations of H are the di↵erent ways in which one can pick k

of its elements without order.
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k-Combinations
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Events

A mathematical model for experiments:

I Sample space: the set ⌦ of all possible outcomes

I An event is a collection1 of possible outcomes: E ✓ ⌦

I Union E [ F and intersection E \ F of events make sense

1Sometimes ⌦ is too large, and not all subsets are events. Ignore this now.
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Examples

12 / 1

1

w.fi iiiiitt ii'itiiiiii.ie liiiitt
Thin atii.ie a It it if



Examples

12 / 1

w.fi f ef E



Examples

12 / 1

w.fi f ff E
5 house race

ftp.gmutaliase.g.E
EB is

EA.BGD.ES F EEwinsAthind



Examples

12 / 1

w.fi f ff t
5 house race

for p
9 E B is
F twinsAthird

flip 2 ins

124 I es.EE c TIE



Examples

12 / 1

w.EE f eif E
5 house race

f p
EEB is
F twinsAthird

flip 2coins
1
2 44149

E coinsdifferent
HT TH

I atleastonehead

E Hit TH HH
rolldiceuntil ghhf E first4 the 6on3rdrollget6

4 1,6 4,26 14.3.61



Union and intersection

Union

Union E [ F of events E and F means E and F .
Infinite union

S
i Ei of events Ei means at least one of the Ei ’s.

Intersection

Intersection E \ F of events E and F means E and F .
Infinite intersection

T
i Ei of events Ei means each of the Ei ’s.

Definition

If E \ F = ;, we call events E and F mutually exclusive.
If events E1, E2, . . . satisfy Ei \ Ej = ; whenever i 6= j , we call
them mutually exclusive. They cannot happen at the same time.
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Inclusion and implication

Remark

If the event E is a subset of the event F , written E ✓ F ,
then the occurrence of E implies that of F .
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Complementarity

Definition

The complement of an event E is E c = ⌦� E .
This is the event that E does not occur.
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Complementarity

Definition

The complement of an event E is E c = ⌦� E .
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Experiments

How events can interact:

I Commutativity

I Distributivity

I Associativity

I De Morgan’s Law
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Properties of events

I Commutativity: E [ F = F [ E

E \ F = F \ E

I Associativity: E [ (F [ G ) = (E [ F ) [ G

E \ (F \ G ) = (E \ F ) \ G

18 / 1



Properties of events

I Commutativity: E [ F = F [ E

E \ F = F \ E

I Associativity: E [ (F [ G ) = (E [ F ) [ G

E \ (F \ G ) = (E \ F ) \ G

18 / 1

1

17
2



Properties of events

I Commutativity: E [ F = F [ E

E \ F = F \ E

I Associativity: E [ (F [ G ) = (E [ F ) [ G

E \ (F \ G ) = (E \ F ) \ G

18 / 1

1

17
2



Properties of events

I Distributivity: (E [ F ) \ G = (E \ G ) [ (F \ G )
(E \ F ) [ G = (E [ G ) \ (F [ G )
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De Morgan’s law

I De Morgan’s law: (E [ F )c = E
c \ F

c
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Probability

I Definition by axioms

I How to compute probabilities

I Inclusion-exclusion principle

I Equally likely outcomes
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Axioms of probability

Definition

The probability P on a sample space ⌦ assigns numbers to events

of ⌦ in such a way that:

1. the probability of any event is non-negative: P(E ) � 0;

2. the probability of the sample space is one: P(⌦) = 1;

3. for countably many mutually exclusive events E1, E2, . . .:

P
�[

i

Ei
�
=
X

i

P(Ei )
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How to compute probabilities

Proposition

For any event, P(E c) = 1� P(E ).

Corollary

We have P(;) = P(⌦c) = 1� P(⌦) = 1� 1 = 0.
For any event, P(E ) = 1� P(E c)  1.
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How to compute probabilities

Proposition

For any two events, P(E [ F ) = P(E ) + P(F )� P(E \ F ).

Proposition (Boole’s inequality)

For any events E1, E2, . . . , En:
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Inclusion-exclusion

Proposition

For any events:

P(E [ F [ G ) = P(E ) + P(F ) + P(G )

� P(E \ F )� P(E \ G )� P(F \ G )

+ P(E \ F \ G ).

P(E1 [ E2 [ · · · [ En) =
X

1in

P(Ei )

�
X

1i1<i2n

P(Ei1 \ Ei2)

+
X

1i1<i2<i3n

P(Ei1 \ Ei2 \ Ei3)

� · · ·
+ (�1)n+1P(E1 \ E2 \ · · · \ En).

25 / 1



Inclusion-exclusion

Proposition

For any events:

P(E [ F [ G ) = P(E ) + P(F ) + P(G )

� P(E \ F )� P(E \ G )� P(F \ G )

+ P(E \ F \ G ).

P(E1 [ E2 [ · · · [ En) =
X

1in

P(Ei )

�
X

1i1<i2n

P(Ei1 \ Ei2)

+
X

1i1<i2<i3n

P(Ei1 \ Ei2 \ Ei3)

� · · ·
+ (�1)n+1P(E1 \ E2 \ · · · \ En).

25 / 1

_I II



Inclusion-exclusion

Proposition

For any events:

P(E [ F [ G ) = P(E ) + P(F ) + P(G )

� P(E \ F )� P(E \ G )� P(F \ G )

+ P(E \ F \ G ).

P(E1 [ E2 [ · · · [ En) =
X

1in

P(Ei )

�
X

1i1<i2n

P(Ei1 \ Ei2)

+
X

1i1<i2<i3n

P(Ei1 \ Ei2 \ Ei3)

� · · ·
+ (�1)n+1P(E1 \ E2 \ · · · \ En).

25 / 1
allthewayuptoa



Example

Example

In a sports club,

36 members play tennis, 22 play tennis and squash,
28 play squash, 12 play tennis and badminton,
18 play badminton, 9 play squash and badminton,

4 play tennis, squash and badminton.

How many play at least one of these games?
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How to compute probabilities

Proposition

If E ✓ F , then P(F � E ) = P(F )� P(E ).

Corollary

If E ✓ F , then P(E )  P(F ).
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Equally likely outcomes
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The return of counting

Finite sample space, |⌦| = N < 1, has special important case
where each experiment outcome has equal probability:

P(!) =
1

N
for all ! 2 ⌦

Definition

Outcomes ! 2 ⌦ are also called elementary events.
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Example

Example

Rolling two dice, what is the probability that the sum of the
numbers shown is 7?

What’s wrong with this solution? “The number 7 is one out of the
possible values 2, 3, . . . , 12 for the sum, and the answer is 1

11 .”
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Summary

I Counting: permutations, combinations, repetitions

I Events: sample space, union, intersection, complement

I Experiments: distributivity, De Morgan’s law

I Probability: axioms, how to compute, equally likely outcomes
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