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Multiplication rule

Proposition (Multiplication rule)

P(E1 \ · · · \ En) = P(E1) · P(E2 |E1) · P(E3 |E1 \ E2)

· · ·P(En |E1 \ · · · \ En�1)
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Example again

Example

An urn contains 6 red and 5 blue balls. We draw three balls at
random, at once (that is, without replacement). What is the
chance of drawing one red and two blue balls?
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Bayes’ theorem
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Bayes’ Theorem

The aim is to say something about P(F |E ), once we know
P(E |F ) (and other things. . . ). This will be very useful, and serve
as a fundamental tool in probability and statistics.
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The Law of Total Probability

Theorem (Partition Theorem)

P(E ) = P(E |F ) · P(F ) + P(E |F c) · P(F c)

Definition

Countably many events F1,F2, . . . form a partition of ⌦ if
Fi \ Fj = ; and

S
i Fi = ⌦.

Theorem (Partition Theorem)

For any event E and any partition F1,F2, . . . :

P(E ) =
X

i

P(E |Fi ) · P(Fi )
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Example

Example

According to an insurance company:

I 30% of population are accident-prone:
they will have an accident in any given year with 0.4 chance.

I 70% of population are careful:
they have an accident in any given year with 0.2 chance.

How likely is a new customer to have an accident in 2023?

19 / 22

F

A

I
canbecalculatedusing

ght yf
Lawoftotalprobability

nF



Example

Example

According to an insurance company:

I 30% of population are accident-prone:
they will have an accident in any given year with 0.4 chance.

I 70% of population are careful:
they have an accident in any given year with 0.2 chance.

How likely is a new customer to have an accident in 2023?

19 / 22

F

A

PCA P AIF P F P AIF PFC
0.4 0.3 0.2 0.7 0.26

Initialprobability of newcustomerbeingaccidentprone is P F 0.3
what isprobability after customerhad an accident PFIA



Bayes’ Theorem

Theorem (Bayes’ Theorem)

P{F |E} =
P{E |F} · P{F}

P{E |F} · P{F}+ P{E |F c} · P{F c}
If {Fi}i partitions ⌦, then:

P{Fi |E} =
P{E |Fi} · P{Fi}P
j P{E |Fj} · P{Fj}
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Belief update

Example

Consider the insurance company again. Imagine it’s now 2024.
We learn that the new customer did have an accident in 2023.
Now what is the chance that they are accident-prone?
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Belief update

Example
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We learn that the new customer did have an accident in 2023.
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Summary

I Probability: multiple ways to compute

I Conditional probability: reduced sample space,
multiplication rule

I Bayes’ theorem: partition theorem, belief update

22 / 22

practice

otherwise
ittakes

you
toolong

like
whenI

calculateinthis
lecture

besystematic



Topics

I Independence: what information changes probability

I Random variables: when variables depend on chance

I Expectation: most likely outcomes of experiment

I Variance: how much the experiment can deviate
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Independence
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Independence

Sometimes partial information on an experiment
does not change the likelihood of an event.

Definition

Events E and F are independent if P(E |F ) = P(E ).
Equivalently: P(E \ F ) = P(E ) · P(F ).
Equivalently: P(F |E ) = P(F ).

Proposition

If E and F are independent events,
then E and F c are also independent.
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Examples
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Independence

Definition

Three events E , F , G are (mutually) independent if:

P{E \ F} = P{E} · P{F},
P{E \ G} = P{E} · P{G},
P{F \ G} = P{F} · P{G},

P{E \ F \ G} = P{E} · P{F} · P{G}.

For more events the definition is that any (finite) subset of them
have this factorisation property.
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Random variables
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Random variables

“Random variables ⇡ random numbers”. But random means that
there must be some kind of experiment behind these numbers.

Definition
A random variable is a function from the sample space ⌦ to the
real numbers R.
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Discrete random variables

Definition
A random variable X that can take on countably many possible
values is called discrete.

10 / 27



Discrete random variables

Definition
A random variable X that can take on countably many possible
values is called discrete.
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Probability mass function

Definition

The probability mass function (pmf), or distribution of a discrete
random variable X gives the probabilities of its possible values:

pX (xi ) = P(X = xi ),

Proposition

p(xi ) � 0 and
X

i

p(xi ) = 1
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Cumulative distribution function

Definition

The cumulative distribution function (cdf) of a random variable X :

F : R ! [0, 1], x 7! F (x) = P(X  x).
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Cumulative distribution function

Proposition

A cumulative distribution function F :

I is non-decreasing: if x  y then F (x)  F (y)

I has limit limx!�1 F (x) = 0 on the left

I has limit limx!1 F (x) = 1 on the right
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Expectation
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Expectation

Once we have a random variable, we want to quantify its typical
behaviour in some sense. Two of the most often used quantities
for this are the expectation and the variance.

Definition
The expectation of a discrete random variable X is:

EX =
X

i

xi · p(xi )

provided the sum exists. Also called mean, or expected value.
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Properties of expectation

Proposition (expectation of a function of a random variable)

If X is a discrete random variable, and g : R ! R a function, then:

Eg(X ) =
X

i

g(xi ) · p(xi ) (if it exists)

Corollary (expectation is linear)

If X is a discrete random variable, and a, b fixed real numbers:

E(aX + b) = a · EX + b.
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Moments

Definition (moments)

Let n 2 N. The nth moment of a random variable X is:

EX n

The nth absolute moment of X is:

E|X |n
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Variance

20 / 27



Example
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3. Variance

Definition (variance, standard deviation)

The variance and the standard deviation of a random variable are:

I VarX = E(X � EX )2.

I SDX =
p
VarX .
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Properties of the variance

Proposition (equivalent form of the variance)

VarX = EX 2 � (EX )2 for any random variable X .

Corollary

EX 2 � (EX )2 for any random variable X ,
with equality only if X is constant.
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Examples
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Properties of the variance

Proposition (variance is not linear)

Let X be a random variable, a and b fixed real numbers. Then:

Var(aX + b) = a2 · VarX
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Summary

I Independence: what information changes probability

I Random variables: when variables depend on chance

I Expectation: most likely outcomes of experiment

I Variance: how much the experiment can deviate
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