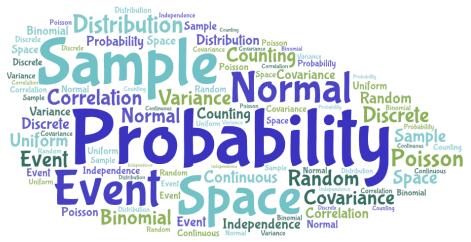
Discrete Mathematics and Probability Week 8



Chris Heunen

Topics

- Independence: what information changes probability
- Random variables: when variables depend on chance
- Expectation: most likely outcomes of experiment
- Variance: how much the experiment can deviate

Independence

Independence

Sometimes partial information on an experiment does not change the likelihood of an event.

Definition

Events E and F are independent if $P(E \mid F) = P(E)$.

Equivalently: $P(E \cap F) = P(E) \cdot P(F)$.

Equivalently: P(F | E) = P(F).

Proposition

If E and F are independent events, then E and F^c are also independent.

Examples

Independence

Definition

Three events E, F, G are (mutually) independent if:

$$P{E \cap F} = P{E} \cdot P{F},$$

$$P{E \cap G} = P{E} \cdot P{G},$$

$$P{F \cap G} = P{F} \cdot P{G},$$

$$P{E \cap F \cap G} = P{E} \cdot P{F} \cdot P{G}.$$

For more events the definition is that any (finite) subset of them have this factorisation property.

Examples

Random variables

Random variables

"Random variables \approx random numbers". But $\it random$ means that there must be some kind of experiment behind these numbers.

Definition

A random variable is a function from the sample space Ω to the real numbers \mathbb{R} .

Discrete random variables

Definition

A random variable X that can take on countably many possible values is called *discrete*.

Probability mass function

Definition

The probability mass function (pmf), or distribution of a discrete random variable X gives the probabilities of its possible values:

$$\mathfrak{p}_X(x_i)=\mathbf{P}(X=x_i),$$

Proposition

$$\mathfrak{p}(x_i) \geq 0$$
 and $\sum_i \mathfrak{p}(x_i) = 1$

Examples

Cumulative distribution function

Definition

The cumulative distribution function (cdf) of a random variable X:

$$F: \mathbb{R} \to [0, 1], \qquad x \mapsto F(x) = \mathbf{P}(X \le x).$$

Cumulative distribution function

Proposition

A cumulative distribution function F:

- ▶ is non-decreasing: if $x \le y$ then $F(x) \le F(y)$
- ▶ has limit $\lim_{x\to-\infty} F(x) = 0$ on the left
- ▶ has limit $\lim_{x\to\infty} F(x) = 1$ on the right

Expectation

Expectation

Once we have a random variable, we want to quantify its *typical* behaviour in some sense. Two of the most often used quantities for this are the *expectation* and the *variance*.

Definition

The *expectation* of a discrete random variable X is:

$$\mathsf{E} X = \sum_i x_i \cdot \mathfrak{p}(x_i)$$

provided the sum exists. Also called mean, or expected value.

Examples

Properties of expectation

Proposition (expectation of a function of a random variable)

If X is a discrete random variable, and $g: \mathbb{R} \to \mathbb{R}$ a function, then:

$$\mathbf{E}g(X) = \sum_{i} g(x_i) \cdot \mathfrak{p}(x_i) \qquad (if it exists)$$

Corollary (expectation is linear)

If X is a discrete random variable, and a, b fixed real numbers:

$$\mathbf{E}(aX+b)=a\cdot\mathbf{E}X+b.$$

Moments

Definition (moments)

Let $n \in \mathbb{N}$. The n^{th} moment of a random variable X is:

 $\mathbf{E}X^n$

The n^{th} absolute moment of X is:

 $\mathbf{E}|X|^n$

Variance

Example

3. Variance

Definition (variance, standard deviation)

The variance and the standard deviation of a random variable are:

- ▶ $Var X = E(X EX)^2$.
- ▶ SD $X = \sqrt{\text{Var } X}$.

Example

Properties of the variance

Proposition (equivalent form of the variance)

Var $X = \mathbf{E}X^2 - (\mathbf{E}X)^2$ for any random variable X.

Corollary

 $\mathbf{E}X^2 \geq (\mathbf{E}X)^2$ for any random variable X, with equality only if X is constant.

Examples

Properties of the variance

Proposition (variance is not linear)

Let X be a random variable, a and b fixed real numbers. Then:

$$Var(aX + b) = a^2 \cdot Var X$$

Summary

- Independence: what information changes probability
- ▶ Random variables: when variables depend on chance
- Expectation: most likely outcomes of experiment
- ▶ Variance: how much the experiment can deviate