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Welcome to Week 9 !

Ian Stark
Senior Lecturer in Computer Science
Laboratory for Foundations of Computer Science
School of Informatics

Research: Mathematical models of programming languages
and concurrent systems
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Research Examples !

Continuous pi-Calculus

RCSB Protein Data Bank
2GBL KaiC Circadian Clock

Morello / CHERI

https://blogs.ed.ac.uk/morello
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Response to Student Feedback !

InfBase
Drop-in helpdesk, 1-1 support and advice to help you work through exercises and examples.

Appleton Tower 7th Floor (AT 7.03)
Monday–Thursday 1100–1300

Quizzes for Exam Preparation
Duplicate set of the quizzes will open after Week 11 for immediate formative feedback and exam
preparation. Does not affect final marks.

Opencourse Website Updates
Caching information revised, browsers should now pull new content sooner.
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Week 9 Topics

Continuous Random Variables and Probability Distributions

Carlton & Devore: Chapter 3

§3.1 Probability Density Functions and Cumulative Distribution Functions

§3.2 Expected Values (but not Moment Generating Functions)

§3.3 The Normal (Gaussian) Distribution

§3.4 The Exponential Distribution (but not the Gamma Distribution)

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.
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Two Kinds of Random Variable

Discrete Random Variable
A discrete random variable can take only a finite or countably infinite number of possible values.

Often these values are integers. For example, a discrete random variable taking only the values 0
and 1 is a Bernoulli random variable

Continuous Random Variable
A continuous random variable is one that takes values over a continuous range: the whole real
line; an interval on the real line, perhaps infinite; or a disjoint union of such intervals.

In addition, a continuous random variable X must have the property that no possible value has
positive probability: P(X = x) = 0 for all x ∈ R.

This only applies to individual values: ranges of values like P(X > 5) or P(a < X < b) may have
non-zero probability.
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Reminder: Probability Mass Function

Definition
The probability mass function (PMF) of a discrete random variable X is defined for every
possible value x as follows.

p(x) = P(X = x) = P( {ω ∈ Ω | X(ω) = x } )

Any probability mass function p(x) takes only non-negative values, and the sum over all possible
values of x will be 1.
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Probability Density Function

Definition
Let X be a continuous random variable. The probability density function (PDF) of X is a
function f(x) such that for any two numbers a ⩽ b we have the following.

P(a ⩽ X ⩽ b) =

∫b
a

f(x)dx .

For any PDF we know that f(x) ⩾ 0 for all values of x
and the total area under the whole graph is 1.∫∞

−∞ f(x)dx = 1
x

f(x)

a b

Carlton & Devore Figure 3.2
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Uniform Distribution

Definition
A continuous random variable X has uniform
distribution on the interval [a,b] for values
a ⩽ b if it has the following PDF.

f(x;a,b) =


1

b− a
if a ⩽ x ⩽ b

0 otherwise

We write this as X ∼ Unif[a,b].

1

a b x

f(x)

b − a

Carlton & Devore Figure 3.6
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Example: Uniform Distribution

A gardening supplier sells packets of seeds. Each packet contains several hundred one-gram
seeds. In practice this weight is only approximate, with an error of Y gram in each seed, where
random variable Y is uniformly distributed between −0.1 and 0.3. Draw a graph of the
probability density function for Y and calculate the following.

1 The probability that an individual seed is less than 0.1g overweight.

2 P(0.2 ⩽ Y ⩽ 0.4)
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Reminder: Cumulative Distribution Function

Definition
For a discrete random variable X with PMF p(x) its cumulative distribution function (CDF) is
defined as follows.

F(x) = P(X ⩽ x) =
∑
y⩽x

p(y)

For any number x, F(x) is the probability that the observed value of X will be no more than x.

2015105
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x

F(x)

Carlton & Devore Figure 2.4
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Cumulative Distribution Function

Definition
For a continuous random variable X with PDF f(x) its cumulative distribution function (CDF) is
defined as follows.

F(x) = P(X ⩽ x) =

∫x
−∞ f(y)dy

For any number x, F(x) is the probability that the observed value of X will be no more than x.

A B x

1

F(x)

Carlton & Devore Figure 3.7
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Cumulative Distribution Function

Definition
For a continuous random variable X with PDF f(x) its cumulative distribution function (CDF) is
defined as follows.

F(x) = P(X ⩽ x) =

∫x
−∞ f(y)dy

For any number x, F(x) is the probability that the observed value of X will be no more than x.

Proposition
If X is a continuous random variable with PDF f(x) and CDF F(x) then at every x where the
derivative F ′(x) is defined we have

F ′(x) = f(x) .
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Computing Probabilities with a CDF

Proposition
Let X be a continuous random variable with PDF f(x) and CDF F(x). Then for any value a we
have

P(X ⩽ a) = F(a) P(X > a) = 1 − F(a)

and for any two values a < b we have

P(a ⩽ X ⩽ b) = F(b) − F(a) .

a

f(x)

= −

a b b

Fig. 3.8 Computing P(a � X � b) from cumulative probabilities

Carlton & Devore Figure 3.8
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Example: PDF and CDF

Random variable T is distributed with the following probability density function.

f(t) =

{
kt(1 − t) 0 ⩽ t ⩽ 1
0 t < 0 or t > 1

Calculate the value of k, sketch a graph of this PDF, and calculate the cumulative distribution
function F(t) for the random variable T . Use this to calculate P(1/3 < T < 2/3).
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Review: PDF and CDF
Give a continuous random variable X with probability density function (PDF) f(x), its
cumulative distribution function (CDF) is written F(x) and defined as follows.

F(x) = P(X ⩽ x) =

∫x
−∞ f(y)dy

Conversion between PDF and CDF gives different ways to calculate the probabilities involved.

f(x) F(x)

xx

F(8)

Shaded area = F(8)
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Carlton & Devore Figure 3.5
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Percentiles of a Continuous Distribution

Definition
Let X be a continuous random variable with PDF f(x) and CDF F(x) and p any real value
between 0 and 1. The (100p)th percentile of X is the value ηp such that P(X ⩽ ηp) = p.

So we have p =

∫ηp

−∞ f(x)dx = F(ηp) and ηp = F−1(p) .

f(x) F(x)

xx

p = F(hp)

Shaded area = p
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Carlton & Devore Figure 3.10
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Percentiles of a Continuous Distribution

Definition
Let X be a continuous random variable with PDF f(x) and CDF F(x) and p any real value
between 0 and 1. The (100p)th percentile of X is the value ηp such that P(X ⩽ ηp) = p.

So we have p =

∫ηp

−∞ f(x)dx = F(ηp) and ηp = F−1(p) .

For example, the 35th percentile of a distribution is η0.35 = F−1(0.35) and the 60th percentile is
η0.6 = F−1(0.6).

The median of a distribution is the 50th percentile, η0.5 = F−1(0.5), sometimes written simply η.

This is the value such that P(X < η) = P(X > η) = 1/2.
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Week 9 Topics

Continuous Random Variables and Probability Distributions

Carlton & Devore: Chapter 3

§3.1 Probability Density Functions and Cumulative Distribution Functions

§3.2 Expected Values (but not Moment Generating Functions)

§3.3 The Normal (Gaussian) Distribution

§3.4 The Exponential Distribution (but not the Gamma Distribution)

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.
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Expected Value of a Continuous Random Variable

For a discrete random variable the mean or expected value is an average over all possible values
of the variable, weighted by their probabilities. For a continuous random variable we replace this
with integration to get a continuous weighted average by probability density.

Definition
Let X be a continuous random variable with PDF f(x). The expected value E(X) is calculated as
a weighted integral.

E(X) =

∫+∞
−∞ x · f(x)dx

This is also known as the mean of the distribution and written µX or simply µ.
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Expected Value of a Function of a Continuous Random Variable

Proposition
Let X be a continuous random variable with PDF f(x). If h(X) is any real-valued function of X
then we can calculate an expected value for that, too.

µh(X) = E(h(X)) =

∫+∞
−∞ h(x) · f(x)dx

The textbook says “This is sometimes called the Law of the Unconscious Statistician”; although
I can’t find anyone actually doing this except in other textbooks.

This is a proposition, not a definition, because h(X) is itself a random variable for which we do
not (yet) know the PDF: so calculating E(h(X)) directly is not straightforward.

Note that E(h(X)) and h(E(X)) will not necessarily have the same value.
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Example: Expectation of a Function of a Random Variable

Random variable X is distributed with the following PDF.

f(x) =

{
x 1

2 ⩽ x ⩽ 3
2

0 otherwise

Sketch the graph of this PDF. Calculate the expected values of X, 1/X, and X2. Compare
E(1/X) with 1/E(X) and E(X2) with E(X)2.
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Variance and Standard Deviation for a Continuous Random Variable

Definition
Let X be a continuous random variable with PDF f(x) and mean µ. Its variance Var(X) is the
expected value of the squared distance to the mean.

Var(X) = E
(
(X− µ)2

)
=

∫+∞
−∞ (x− µ)2 · f(x)dx

The standard deviation, written SD(X) or σX or just σ, is the square root of the variance.

σX = SD(X) =
√

Var(X)
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Properties 1/2

Let X be a continuous random variable with PDF f(x), mean µ, and standard deviation σ.

Variance Shortcut

Var(X) = E(X2) − µ2 =

∫+∞
−∞ x2 · f(x)dx−

(∫+∞
−∞ x · f(x)dx

)2

Chebyshev Inequality
For any constant value k ⩾ 1, the probability that X is more than k standard deviations away
from the mean is no more than 1/k2.

P
(
|X− µ| ⩾ kσ

)
⩽

1
k2
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Properties 2/2

Let X be a continuous random variable with PDF f(x), mean µ, and standard deviation σ.

Linearity of Expectations
For any functions h1(X) and h2(X) and constants a1, a2, and b, the expected value of these in
linear combinations is the linear combination of the expected values.

E
(
a1 · h1(X) + a2 · h2(X) + b

)
= a1 · E

(
h1(X)

)
+ a2 · E

(
h2(X)

)
+ b

Rescaling
For any constants a and b the mean, variance and standard deviation of (aX+ b) can be
calculated from the corresponding values for X.

E(aX+ b) = aE(X) + b Var(aX+ b) = a2 Var(x) SD(aX+ b) = |a|SD(X)
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Example: Proving Properties of Expected Values

Prove that expected value scales linearly: E(aX+ b) = aE(x) + b

(Use the “Law of the Unconscious Statistician”.)

Prove the shortcut for calculating variance: Var(X) = E(X2) − E(X)2.

(Use the linearity of expectations for expected value of functions of a random variable.)
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Summary
Topics

Continuous random variables
Uniform distribution
PDF, CDF, and converting between them

Percentiles; median; expected values;
variance and standard deviation
Variance shortcut; Chebyshev inequality;
linearity of expectations; rescaling

Study Guide
Continuous Random Variables
Numerical Properties of Continuous Distributions

Reading
Chapter 3, §§3.1.1–3.1.5 and §3.2.1; Pages 147–157 and 162–166.

Exercises
Chapter 3, Exercises 1–31; Pages 158–162 and 168–170.
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