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Week 9 Topics

Continuous Random Variables and Probability Distributions

Carlton & Devore: Chapter 3

§3.1 Probability Density Functions and Cumulative Distribution Functions

§3.2 Expected Values (but not Moment Generating Functions)

§3.3 The Normal (Gaussian) Distribution

§3.4 The Exponential Distribution (but not the Gamma Distribution)

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.
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Normal (Gaussian) Distribution

Definition
A continuous random variable X has normal distribution (or Gaussian distribution) with
parameters µ and σ if it has the following probability density function.

f(x;µ,σ) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

We write this as X ∼ N(µ,σ).

m m +  s m  m + sm m + s
Carlton & Devore Figure 3.13
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Normal (Gaussian) Distribution

Definition
A continuous random variable X has normal distribution (or Gaussian distribution) with
parameters µ and σ if it has the following probability density function.

f(x;µ,σ) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

We write this as X ∼ N(µ,σ).
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Standard Normal Distribution

Definition
The normal distribution with parameters µ = 0 and σ = 1 is the standard normal distribution
and a random variable with that distribution is a standard normal random variable, usually
named Z and with the following probability density function.

f(z; 0, 1) =
1√
2π

e−z2/2

The corresponding cumulative distribution function is written Φ(z).

0 z

Standard normal (z) curve

Shaded area = Φ(z) 

Carlton & Devore Figure 3.14
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Tabulating the Standard Normal Distribution

The CDF Φ(z) for the standard normal distribution
can be expressed as an integral.

Φ(z) =

∫z
−∞

1√
2π

e−x2/2 0 z

Standard normal (z) curve

Shaded area = Φ(z) 

Carlton & Devore Figure 3.14

However, this does not resolve into any convenient algebraic form and calculating values requires
some method of computational approximation. Most statistical software packages provide
functions to do this, as do some scientific calculators, and it’s also standard to have
precomputed tables for Φ(z).

Carlton & Devore provide one at the back of the book, Appendix A.3, pp. 601–602.
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Table A.3 (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

602 Appendix A: Statistical Tables

https://link-springer-com.eux.idm.oclc.org/content/pdf/10.1007/978-3-319-52401-6.pdf#page=625


Example

Suppose Z is a continuous random variable with the standard normal distribution: Z ∼ N(0, 1).
Use a table of standard normal values to calculate the following.

1. P(Z < 0.12)

2. P(Z > 0.61)

−2 −1 1 2

Ian Stark DMP Lecture 16 / Continuous Probability Distributions 2025-11-10



Standardizing a Normally-Distributed Random Variable

Proposition
If continuous random variable X ∼ N(µ,σ) then random variable Z defined as

Z =
X− µ

σ

has standard normal distribution: Z ∼ N(0, 1).

This is then useful to calculate probabilities involving X using the standard normal CDF Φ(z).

P(X ⩽ a) = P

(
X− µ

σ
⩽

a− µ

σ

)
= P

(
Z ⩽

a− µ

σ

)
= Φ

(
a− µ

σ

)
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Standardizing a Normally-Distributed Random Variable

Proposition
If continuous random variable X ∼ N(µ,σ) then random variable Z defined as

Z =
X− µ

σ

has standard normal distribution: Z ∼ N(0, 1).

This is then useful to calculate probabilities involving X using the standard normal CDF Φ(z).

P(X ⩽ a) = Φ

(
a− µ

σ

)
P(a ⩽ X ⩽ b) = Φ

(
b− µ

σ

)
−Φ

(
a− µ

σ

)
P(X ⩾ b) = 1 −Φ

(
b− µ

σ

)
(100p)th percentile ηp = µ+Φ−1(p) · σ
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Standardizing a Normally-Distributed Random Variable

Proposition
If continuous random variable X ∼ N(µ,σ) then random variable Z defined as

Z =
X− µ

σ

has standard normal distribution: Z ∼ N(0, 1).

xm 0

(x− m)/s

N(m,s)
N(0,1)

=

Carlton & Devore Figure 3.19
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Example

Continuous random variable X is normally distributed with mean 5 and standard deviation 2.
Use the table of standard normal values to calculate the following.

(a) P(X < 5.9)

(b) P(X > 6.5)

1 2 3 4 5 6 7 8 9
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Approximating the Binomial Distribution

Probability histograms for the binomial distributions Binom(20, 0.6) and Binom(20, 0.1).
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Carlton & Devore Figure 3.23

The blue curves are the normal distributions with the same mean and standard deviation. For the
distribution on the left the normal distribution is a good fit; for the one on the right, a poor fit.
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Approximating the Binomial Distribution

Proposition
Suppose X is a binomial random variable counting successes in n trials each with probability p.
If the distribution is not too skewed to left or right then this can be approximated by the normal
distribution with mean µ = np and standard deviation σ =

√
npq, where q = (1 − p).

P(X ⩽ x) = B(x;n,p) ≈ Φ

(
x+ 0.5 − np

√
npq

)
This approximation is generally considered adequate when np ⩾ 10 and nq ⩾ 10.

The adjustment of +0.5 is a continuity correction and often ignored if np and nq are large,
when it makes very little difference.
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Example

I have an unfair six-sided die that is biased to give higher numbers: the probability of throwing a
six is 1/3. Suppose I throw it ten times and want to know the probability of throwing a six at
least four times.

(a) Calculate this exactly using the binomial distribution.

(b) Calculate an approximation using the normal distribution.

Ian Stark DMP Lecture 16 / Continuous Probability Distributions 2025-11-10



Week 9 Topics

Continuous Random Variables and Probability Distributions

Carlton & Devore: Chapter 3

§3.1 Probability Density Functions and Cumulative Distribution Functions

§3.2 Expected Values (but not Moment Generating Functions)

§3.3 The Normal (Gaussian) Distribution

§3.4 The Exponential Distribution (but not the Gamma Distribution)

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.

Ian Stark DMP Lecture 16 / Continuous Probability Distributions 2025-11-10



Exponential Distribution

Definition
A continuous random variable X has
exponential distribution with parameter λ,
for some λ > 0, if it has the following
probability density function.

f(x; λ) =
{
λe−λx if x > 0
0 otherwise

We write this as X ∼ Exp(λ). 1

f(x;λ)

2

1.5

1

.5

0 x

λ = 2

λ = 1
λ = .5

0

Carlton & Devore Figure 3.24
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Exponential Distribution

X ∼ Exp(λ)

PDF f(x; λ) =
{
λe−λx if x > 0
0 otherwise

CDF F(x; λ) =
{

1 − e−λx if x > 0
0 otherwise

Mean E(X) = 1/λ
Standard deviation SD(X) = 1/λ

1

f(x;λ)

2

1.5

1

.5

0 x

λ = 2

λ = 1
λ = .5

0

Carlton & Devore Figure 3.24
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Example

A large database routinely experiences disk
failure: thanks to storage redundancy the
system can keep going, but the disks do need to
be replaced. Suppose that D is the number of
days between disk failures, and that this is a
continuous random variable with exponential
distribution D ∼ Exp(0.25). Calculate the
following to two significant figures.

(a) The expected time between disk failures.

(b) P(D ⩽ 1), the chance of a disk failure
within one day.

X ∼ Exp(λ)

PDF f(x; λ) =
{
λe−λx if x > 0
0 otherwise

CDF F(x; λ) =
{

1 − e−λx if x > 0
0 otherwise

Mean E(X) = 1/λ
Standard deviation SD(X) = 1/λ

(c) P(D ⩽ 3 | D ⩾ 2), the chance a disk will fail on the third day if we have already had two
clear days.

Ian Stark DMP Lecture 16 / Continuous Probability Distributions 2025-11-10



Exponential Distribution is Memoryless

Proposition
The exponential distribution is memoryless: if random variable X ∼ Exp(λ) represents the waiting
time until something happens, then as time passes the amount of time remaining always has the
same distribution.

P( X ⩾ s+ t | X ⩾ s ) = P(X ⩾ t) for all s, t ∈ R⩾0

P( X ⩽ s+ t | X ⩾ s ) = P(X ⩽ t) for all s, t ∈ R⩾0

P( (s+ a) ⩽ X ⩽ (s+ b) | X ⩾ s ) = P(a ⩽ X ⩽ b) for all a,b, s ∈ R⩾0

In fact the exponential distribution is the only continuous distribution with this property.
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Poisson Distribution and Exponential Distribution
The memoryless property means that the exponential distribution occurs naturally in many
situations where multiple things happen independently at random over time: emails arriving;
calls to a customer service centre; molecules colliding in a chemical reaction.

This also links it to the discrete Poisson distribution, which arises when counting such things.

Let continuous random variable T be the time in minutes between successive arrivals at a
drive-through business; and discrete random variable N be the number of arrivals each minute.

If T has exponential distribution with parameter λ, then N has Poisson distribution with the
same parameter λ.

t

T1 T2 T3 T4 T5 …

…

X X X X X

Carlton & Devore Figure 7.18
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Summary

Topics
Normal (Gaussian) distribution
Standard normal distribution
Standardizing a normally-distributed random variable
Approximating the binomial distribution

Exponential distribution
Memoryless property
Connection to Poisson
distribution

Reading
Chapter 3, §§3.3.1, 3.3.2, 3.3.4, 3.3.5, and 3.4.1; pp. 171–178, 179–181, and 187–189.

Exercises
Chapter 3, Exercises 39–65, 71–74, and 79–82; pp. 182–186 and 194–196.
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