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Week 11 Topics

Chapter 4: Joint Probability Distributions and Their Applications
§4.4 Conditional Distributions

§4.5 The Central Limit Theorem

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.

Exam Preparation
Next week’s lectures on Monday and Thursday will review course content and advise on exam
preparation.
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Conditional Distribution Functions

Definition
Let X and Y be discrete random variables with joint probability mass function p(x,y) and
marginal pX(x) for X. Then the conditional probability mass function (CPMF) of Y given X is
defined as follows.

pY|X(y | x) =
p(x,y)
pX(x)

for any x, y where pX(x) > 0

For continuous random variables X and Y with JPDF f(x,y) and X marginal fX(x) we have an
analogous conditional probability density function (CPDF).

fY|X(y | x) =
f(x,y)
fX(x)

for any x, y where fX(x) > 0
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Example

A vehicle occupancy survey counts the number of adults and children in passing cars over the
course of a week. It finds the following proportions for different combinations of occupancy.

Children C

Adults A 0 1 2

1 0.66 0.12 0.05
2 0.14 0.02 0.01

(One value taken from Transport Scotland data;
others invented for this example)

For example, the probability that a car chosen at random carries one adult and one child is 0.12.

1. Calculate the conditional probability mass pC|A(1, 2).
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Independence

Proposition
gTwo discrete random variables X and Y are independent if and only the conditional PMF of X
is the same as its marginal PMF; or similarly for Y.

pX|Y(x | y) = pX(x) ⇐⇒ p(x,y) = pX(x)pY(y) ⇐⇒ pY|X(y | x) = pY(y)

The same result holds for continuous random variables and their conditional and marginal
probability density functions.

fX|Y(x | y) = fX(x) ⇐⇒ f(x,y) = fX(x)fY(y) ⇐⇒ fY|X(y | x) = fY(y)

For independent random variables, conditional probabilities are the same as unconditioned ones.

Proof is direct by algebraic manipulation: see §4.4.1 for details.

Ian Stark DMP Lecture 19 / Conditional and Limit Distributions 2025-11-20



Example

A vehicle occupancy survey counts the number of adults and children in passing cars over the
course of a week. It finds the following proportions for different combinations of occupancy.

Children C

Adults A 0 1 2

1 0.66 0.12 0.05
2 0.14 0.02 0.01

(One value taken from Transport Scotland data;
others invented for this example)

For example, the probability that a car chosen at random carries one adult and one child is 0.12.

2 Are the random variables A and C independent?
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Conditional Expectation and Variance

Definition
Suppose X and Y are discrete random variables. The conditional mean or conditional
expectation of Y given X is defined from the conditional probability mass pY|X(y | x).

µY|X=x = E(Y | X = x) =
∑
y

y · pY|X(y | x)

For two continuous random variables X and Y conditional expectation uses integration and the
conditional probability density fY|X(y | x).

µY|X=x = E(Y | X = x) =

∫∞
−∞ y · fY|X(y | x)dy
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Example

A vehicle occupancy survey counts the number of adults and children in passing cars over the
course of a week. It finds the following proportions for different combinations of occupancy.

Children C

Adults A 0 1 2

1 0.66 0.12 0.05
2 0.14 0.02 0.01

(One value taken from Transport Scotland data;
others invented for this example)

For example, the probability that a car chosen at random carries one adult and one child is 0.12.

3 Calculate the conditional expectation E(C | A = 2).
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Conditional Expectation and Variance

Definition
The conditional expectation of a function h(Y) given X for random variables X and Y is defined
similarly to the conditional mean.

E(h(Y) | X = x) =


∑
y

h(y) · pY|X(y | x) Discrete random variables X and Y

∫∞
−∞ h(y) · fY|X(y | x)dy Continuous random variables X and Y

In particular we can calculate the conditional variance of Y given X.

σ2
Y|X=x = Var(Y | X = x) = E((Y − µY|X=x)

2 | X = x) = E(Y2 | X = x) − µ2
Y|X=x
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Example

A vehicle occupancy survey counts the number of adults and children in passing cars over the
course of a week. It finds the following proportions for different combinations of occupancy.

Children C

Adults A 0 1 2

1 0.66 0.12 0.05
2 0.14 0.02 0.01

(One value taken from Transport Scotland data;
others invented for this example)

For example, the probability that a car chosen at random carries one adult and one child is 0.12.

4 Calculate the conditional variance Var(C | A = 2).
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Laws of Total Expectation and Variance

Proposition
For random variables X and Y, the conditional mean E(Y | X) and variance Var(Y | X) of Y
given X are themselves both random variables. Each has its own distribution, mean, and
variance, with the following properties.

E(Y) = E(E(Y | X)) Law of Total Expectation

Var(Y) = Var(E(Y | X)) + E(Var(Y|X)) Law of Total Variance

These equations are helpful when the distribution of Y is only known by its conditional
distribution on X: typically, X describes some environmental factor which can be observed but
not controlled and the distribution of Y is given in terms of that.
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Example

A vehicle occupancy survey counts the number of adults and children in passing cars over the
course of a week. It finds the following proportions for different combinations of occupancy.

Children C

Adults A 0 1 2

1 0.66 0.12 0.05
2 0.14 0.02 0.01

(One value taken from Transport Scotland data;
others invented for this example)

For example, the probability that a car chosen at random carries one adult and one child is 0.12.

5 Calculate the probability distribution of random variable E(C | A).
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Example

A vehicle occupancy survey counts the number of adults and children in passing cars over the
course of a week. It finds the following proportions for different combinations of occupancy.

Children C

Adults A 0 1 2

1 0.66 0.12 0.05
2 0.14 0.02 0.01

(One value taken from Transport Scotland data;
others invented for this example)

For example, the probability that a car chosen at random carries one adult and one child is 0.12.

6 Calculate the expected value E(E(C | A)).
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Week 11 Topics

Chapter 4: Joint Probability Distributions and Their Applications
§4.4 Conditional Distributions

§4.5 The Central Limit Theorem

The study guide and accompanying videos indicate the examinable course content. The
corresponding sections in the book are to support this. Additional sections in the book are
useful extension material but not required for this course.

Exam Preparation
Next week’s lectures on Monday and Thursday will review course content and advise on exam
preparation.
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Random Samples

Definition
A set of random variables X1,X2, . . . ,Xn are independent and identically distributed (IID) if:

The random variables Xi are all independent; and
Every Xi has the same probability distribution.

We call such a set of random variables a random sample of size n from this distribution.

Total and Mean
For a random sample X1, . . . ,Xn of size n the sample total T and sample mean X̄ are two
random variables defined from the Xi.

T = X1 + X2 + · · ·+ Xn =

n∑
i=1

Xi X̄ =
X1 + X2 + · · ·+ Xn

n
=

T

n
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Properties of Sample Total and Mean

Proposition

Let T and X̄ be sample total and mean of IID random variables X1, . . . ,Xn with mean µ and
standard deviation σ. Then they have the following properties.

E(T) = nµ

Var(T) = nσ2 and SD(T) =
√
nσ

If the Xi are normally distributed,
then so is T .

E(X̄) = µ

Var(X̄) = σ2/n and SD(X̄) = σ/
√
n

If the Xi are normally distributed,
then so is X̄.

Proofs use previous results on linear combinations of random variables: that expectations always
add up; variances do too if the random variables are independent; and independent normal
distributions add to give normal distributions.
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The Law of Large Numbers

Proposition

Let X1, . . . ,Xn be a random sample from a distribution where each Xi has mean µ and standard
deviation σ. In the limit as n → ∞ the sample mean X̄ converges to µ:

In mean square: E
(
(X̄− µ)2

)
→ 0 as n → ∞

In probability: P(|X̄− µ| ⩾ ε) → 0 as n → ∞ for any ε > 0.

This applies for any random sample whatever the original distribution: the sample mean always
converges to the distribution mean. Finally, an “expected value” really is something expected.
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Sampling Normal Distributions

Let X1, . . . ,Xn be a random sample of
normally-distributed variables, each
with mean µ and standard deviation σ.
Then X̄ ∼ N(µ,σ/

√
n).

If Xi ∼ N(µ,σ)

Then X̄ ∼ N(µ,σ/
√
n)

X distribution
when n = 10

X distribution
when n = 4

Population
distribution

Carlton & Devore Figure 4.8
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Sampling Arbitrary Distributions

Let X1, . . . ,Xn be a random sample of
IID variables, each with mean µ and
standard deviation σ. Then as n

becomes large the random variable X̄

approaches a normal distribution.

“ lim
n→∞ X̄ ∼ N(µ,σ/

√
n)”

X distribution for
small to moderate n

Population
distribution

X distribution for
large n (approximately normal)

m
Carlton & Devore Figure 4.10
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The Central Limit Theorem

Proposition
Let X1, . . . ,Xn be a random sample from a distribution where each Xi has mean µ and standard
deviation σ. In the limit as n → ∞ the sample total T and sample mean X̄ have normal
distributions.

lim
n→∞P

(
T − nµ√

nσ
⩽ z

)
= P(Z ⩽ z) = Φ(z) “ lim

n→∞ T ∼ N(nµ,
√
nσ)”

lim
n→∞P

(
X̄− µ

σ/
√
n

⩽ z

)
= P(Z ⩽ z) = Φ(z) “ lim

n→∞ X̄ ∼ N(µ,σ/
√
n)”

Here Z ∼ N(0, 1) is a standard normal variable. We say that random variables T and X̄ are
asymptotically normal.
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Summary

Topics

Conditional distribution functions: discrete
and continuous
Independence
Conditional expectation and variance
Laws of total expectation and variance

Random samples
Sample total and mean
Sampling normal distributions
Central Limit Theorem
Law of Large Numbers

Reading
Chapter 4, §4.4, §4.5, §§4.5.1, 4.5.2, and 4.5.4; pp. 277–286, 290–297 and 299.

Exercises
Chapter 4, Exercises 66–100, pp. 286–289 and 300–302.
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