
Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

Exam Format
Exam Preparation
Revision

2

Exam Format

3

Exam Preparation

4

Lecture 1 – What is a Distributed System?

A distributed system
• Multiple computers (or nodes) communicate via a network
• Work together to achieve some task together/collectively
• Appears as a single coherent system to the users
• Failure of a node you didn’t even know existed can render your own node

unusable

Examples
• Distributed Systems are ubiquitous

5

Why study Distributed Systems?

Inherently distributed
• Either necessarily or sufficiently

For better reliability
• If one node fails, the system continues to work

For better performance
• Get things done faster; for example, due to replication (from a nearby

datacenter)

To solve bigger and complex problems
• Single node cannot handle all the data/processing capacity, etc.
• Efficiently solve a problem

6

Distributed Systems Architectural Styles

A style is formulated in terms of
• (Replaceable) components with well-defined interfaces
• The way that components are connected to each other
• The data exchanged between components
• How these components and connectors are jointly configured into a system

Connector
• A mechanism that mediates communication, coordination, or cooperation among

components
Different styles

• Layered – Components organized in a layered style
• Service-Oriented – Multiple types – object-based, microservices, resource-based
• Publish-Subscribe – Strong separation between processing and coordination; event

based and shared data-space

7

Distributed System Architecture

Organize system based on where the software components are placed
Three main types
• Centralized

• Basic Client-server model
• Clients – Processes using services; Servers – Processes offering services

• Decentralized
• Peer-to-peer systems; Client and server physically split up into logical equivalent parts
• Two types of topology – Structured (deterministic) and unstructured (random)

• Hybrid
• Mix of centralized and decentralized – Cloud Computing, Edge Computing

8

Lecture 2– Remote Procedure Call

Allow remote services to be called as procedures
• Transparency with respect to location, implementation,

language, etc.

Goal is to make distributed computing look like
centralized computing
Basic Idea

• Programs can call procedures on other machines
• When process A calls a procedure foo() on machine B, A is

suspended
• Execution of foo() takes place on machine B
• After execution of foo(), the result is sent back to A, which

resumes execution

9

RPC Overall Flow

10

Lecture 3 – System Models

Two thought experiments
• Two generals problem – a model of networks
• Byzantine generals problem – a model of nodes

Nodes and network both can be faulty
System model captures our assumptions about nodes and the network
behavior
• Abstract description of the properties
• Implementation may vary depending on the technology/language used
• Network, Node, Timing behavior

11

Thought experiment 1: A romantic date…

12
Designed by Freepik

Go? Go?

Messages

Thought experiment 1: A romantic date…

13
Designed by Freepik

Go? Go?

Messages

Boy Girl Outcome

Do not go Do not go Nothing happens

Goes Does not go Poor boy 💔

Does not go Goes Poor girl 💔

Goes Goes Great romantic date 💞

Desired outcome – Boy
goes if and if only Girl
goes, or vice versa

Thought Experiment 2: Byzantine General
Problem
Problem – Byzantine general’s problem
• Up to f nodes (friends) might behave maliciously
• Honest nodes (friends) don’t know who the malicious ones are
• The malicious nodes (friends) may collude
• Nevertheless, honest nodes (friends) must agree on a plan

Theorem
• Need 3f + 1 nodes (friends) in total to tolerate f malicious nodes (friends)
• Cryptography may help

Key Message
• How do you make sure that multiple entities, which are separated by

distance, are in absolute full agreement before an action is taken?

14

Nodes & Network Behavior

Network behavior
• Reliable – Message received if it is sent; Messages can be re-ordered
• Fair-loss – Messages may be lost, duplicated, or reordered
• Arbitrary – Malicious adversary may eavesdrop, modify, drop, spoof, replay

Node Behavior – Halting behavior
• Fail-stop – Crash failures, can reliably detect failures
• Fail-noisy – Crash failures; eventually reliably detect failure; noisy behavior
• Fail-silent – Omission or crash failures; clients cannot tell what went wrong
• Fail-safe – Arbitrary; yet benign failures (no harm)
• Fail-arbitrary (Byzantine) – Arbitrary, with malicious failures

15

Lecture 4 – Ordering of Events

Clock synchronization is one approach to order events
Avoid absolute time as it may not be accurate (and less important)
For ordering, we need causality to be determined
Happens-before relation

• An event is something happening at one node
• Event A happens before Event B (written as AàB) iff:

• A and B occurred on the same node, and A occurred before B in that node’s local execution order
• Event A is the sending of some message M, and event B is the receipt of that same message M

• There exists an event C such that AàC and CàB

Happens-before relation is a partial order
• AàB or BàA is not possible
• In that case, A and B are concurrent (written A || B)

16

Logical Clocks

Assign logical timestamp to each event where timestamp obeys causality
Rules/Algorithm

• Each process maintains a counter value; On init, counter value is 0
• Each process increments its counter when a send or an instruction is executed.
• A send message event carries the counter (timestamp)
• For a receive message event, the recipient process will update its local counter

max(local counter, message counter (timestamp)) + 1
Properties

• If a à b then value-of-counter(a) < value-of-counter(b)
• However, if value-of-counter(a) < value-of-counter(b), does not imply aàb

Lamport clock not guaranteed to be ordered or unequal for concurrent
events

17

Logical Clocks Example

18

Vector Clocks

Assume n nodes in the system, N = <N1, N2… Nn>
Vector timestamp of an event a is V(a) = <t1, t2…tn>
ti is the number of events observed on node Ni
Each node has a current vector timestamp T
On event at node Ni, increment vector element T[i]
Attach current vector timestamp to each send message
Recipient merges message vector into its local vector

19

Vector Clocks (contd…)

Each node has a current vector timestamp T having n elements for n nodes
On event at node Ni, increment vector element T[i]
Rules/Algorithm

• On initialization at node Ni,
• do T = <0, 0, …0>

• On any event occurring at node Ni,
• do T[i] = T[i] + 1

• On Send event while sending message M at node Ni,
• do T[i] = T[i] + 1;
• Send (T, M)

• On Receiving event message M at node Nj, do
• T[j] = T[j] + 1
• T[k] = max(T[k], T’[k]), for every k ≠ j and k ∈ {1,…n}

20

Vector Clocks Example

21

Detecting Global Properties – Global
Snapshots
Sometimes it is necessary to have a global view of the system

• Checkpointing to support restarting the system post failure
• Garbage collection of objects
• Deadlock detection
• Termination of computation
• Debugging in general

Global Snapshot = Global State
Global state comprises

• Individual state of each process in the system
• Individual state of each communication channel in the system

Capture instantaneous state of each process and the communication
channels

22

Consistent Cut

A cut is a set of cut events (or snapshot), one per node, each of which
captures the state of the node on which it occurs
A cut C = {c1, c2, … cn} is consistent, iff
• for (each pair of events e, f in the system)
• event e is in the cut C, and if f --> e, then event f is also in the cut C

The cut events in a consistent cut are not causally related
• The cut is a set of concurrent events, and a set of concurrent events is a cut

23

Lecture 5 – Consensus with Paxos

Two phases – Prepare & Accept
Prepare Phase
• Find out any chosen values so far
• Block older and uncompleted proposals

Accept Phase
• Inform acceptors to accept a specific value

24

Algorithm – Prepare Phase

Proposer
• Choose proposal number n, send <prepare, n> to acceptors

Acceptor
• Only receiving a prepare message

• If n > nh, where nh is the highest proposal seen so far by the acceptor
 nh = n. (Promise to not accept older proposals)
 If no prior proposal accepted,
 reply <promise, n, NULL>
 Else
 reply <promise, n, (na, va)>
• Else
 Reply <prepare-failed>

25

Algorithm – Accept Phase

Proposer
• If receive promise from majority of the acceptors,
 Determine any earlier chosen value va for na and choose latest value or any
 value v selected by the proposer
 send <accept, n, v> to acceptors

Acceptors
• If n >= nh
 na = nh = n
 va = v
• reply <accept, nh>

Proposer
• When responses received from the majority
 If any nh > n
 Start from prepare phase again
 Else
 Value is chosen

26

Paxos flow

27

Raft Basics

28

A node can be either follower, candidate, or leader
Raft divides time into terms of arbitrary length; terms are numbered
consecutive integers
Each term begins with an election, where one or more candidates
attempts to become a leader

• Two possible outcomes of an election – leader elected or split vote
Term acts as a logical clock and helps detect obsolete information such
as stale leaders
Each node stores a current term number, increases monotonically
Current terms exchanged while normal communication

• One node’s current term smaller than others, it updates it term to larger
value

• If leader/candidate discovers its term is out of date; revert to follower role
If node receives a request with a stale term number, reject the request

High-Level Understanding

29

Log entries over time

30

A leader’s log is the ultimate truth
While election, ensure that the leader
has all committed entries
Leader keeps track of each follower's
log
Leader ensures all followers are up to
date
• Either remove uncommitted log

entries or append to log entries

Lecture 6 – Mutual Exclusion & Concurrency

Concurrency leads to non-deterministic behavior
• Different results even with same inputs

Race conditions: Specific type of bug
• Sometimes program works fine, sometimes it doesn’t; depends on timing

Want to execute instructions as an uninterruptable group
• Want them to be atomic; appears that all execute at once, or none execute

Uninterruptable group of code is called critical section
Mutual exclusion for critical sections
• If thread A is in critical section C, thread B isn’t
• It is fine if other threads do unrelated work

31

Distributed Locks

Cannot share local lock variables
Mutual exclusion in a distributed system
Central Solution
• Elect a central leader using election algorithm
• Leader keeps a queue of waiting requests from nodes who wish to access

Decentralized approach
• All nodes involved in the decision making of who should access the resource
• Ricart-Agrawala Algorithm – Use the notion of causality – rely on logical

timestamps
• Token Ring Algorithm -- All nodes arranged in a ring fashion; Use token as a

means of ownership

32

Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does
Deadlocks can only happen with these four conditions

1. Mutual Exclusion
2. Hold-and-wait
3. No preemption
4. Circular Wait

Can eliminate deadlock by eliminating any one
condition

33

ST
O
P

STOP

STO
P

STOP

AB

CD

Lecture 7 – Replication

Replicate data at one or more sites can help with
• Availability & Fault Tolerance

• If primary server crashes, secondary can takeover => Highly available service
• Mask node crashes => Transparency

• Performance
• Concurrent Reads can be served from multiple servers improving performance

• Scaling
• Size scalability – Prevent overloading a single server

Having multiple copies, means that when any copy changes, the change
needs to be propagated to all other copies

• Need replicas to have same data, i.e., they should be kept consistent
Efficiently synchronize all replicas a challenging problem

34

Consistency Models

A consistency model is a contract between the programmer and a
system
• The system guarantees that if the programmer follows the rules for

operations on data, data will be consistent
• Result of the reading, writing, updating data will be predictable

Two consistency models
• Data-centric consistency models – Defines consistency as experienced by all

the clients; provides a system wide consistent view on the data store
• Client-centric consistency models – Defines consistency of the data store only

from one client’s perspective; Different clients might see different sequences
of operations at their replicas

35

Strong Data-Centric Consistency

Strong Consistency Models
• Operations on shared data are synchronized without synchronization

operations

Few options
• Strict Consistency – Absolute time ordering of all shared accesses matters
• Sequential Consistency – All processes see all shared accesses in the same

order
• Linearizability – Sequential Consistency + Operations are ordered according to

a global time

36

Strong Data-Centric Consistency (contd…)

37

P1:
P2:

W(x)a
R(x)a

Strictly Consistent Data Store

P1:
P2:

W(x)a
R(x)aR(x)NIL

Not Strictly Consistent Data Store

Sequentially Consistent Data Store

Not Sequentially Consistent Data Store

Linearizable Consistent Data Store

Not Linearizable Consistent Data Store

Strict Consistency Sequential Consistency Linearizable Consistency

Lecture 8 – Client-Side Consistency Models

Strong Consistency – See all previous writes
• Possible Values – 2-5

Eventual Consistency – See subset of previous writes
• Possible Values – 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3,

1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5
Consistent Prefix – See initial sequence of writes

• Possible Values – 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5
Bounded Staleness – See all “old” writes

• Possible Values – 2-3, 2-4, 2-5 (At most one innings out-of-date)
Monotonic Reads – See increasing subset of writes

• Possible Values – After reading 1-3, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5
Read My Writes – See all writes performed by the reader

• Possible Values – 2-5 (Writer); 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0,
1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5 (Everyone
else)

38

1 2 3 4 5 6 7 8 9 RUNS

Visitors 0 0 1 0 1 0 0 2

Home 1 0 1 1 0 2 5

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Visitors Home

2 5

Existing Score

Lecture 9 – Distributed File-Systems

Network File System (NFS)
• Stateless: Servers do not remember clients or open files
• Different behavior for non-idempotent operations like rmdir, mkdir
• NFS handles client and server crashes very well
• Caching Update Visibility Problem – Server doesn’t have latest version

• Flush data on client on close() or at other times (optionally)
• Odd consistency model – File flushes not atomic; Mix of updates within file possible

• Caching Stale Cache – All clients do not have the latest version from server
• Clients recheck if cached copy is current before using data
• Clients could read data that is up to 3 seconds old

39

Lecture 9 – Distributed File-Systems

Andrew File System (AFS)
• Stateful design: Servers remembers clients and open files
• Caching Update Visibility Problem

• Cache whole file instead of blocks
• Last writer wins (i.e., the last file close wins); no data mix up like NFS

• Caching Stale Cache Problem
• On open() by a client, ask for callback from server if file changes
• Server tells clients when data is overwritten

40

END OF LECTURES
Good luck with the exam

41

Chandy-Lamport Snapshot Algorithm

Initiator Pi records it own state
Initiator process creates special messages called “Marker” messages
For j = 1 to N except i
• Pi sends out a Marker message on outgoing channel Cij
• Starts recording the incoming messages on each of the incoming channels at

Pi: Cji (for j = 1 to N except i)

42

Chandy-Lamport Snapshot Algorithm

Whenever a process Pi receives a Marker message on an incoming
channel Cki
• If (this is the first Marker Pi is seeing)

• Pi records its own state first
• Marks the state of the channel Cki as “empty”
• for j = 1 to N except I

• Pi sends out a Marker message on outgoing channel Cij
• Starts recording the incoming messages on each of the incoming channels at Pi: Cji (for j

= 1 to N except i and k)
• Else (Marker already seen)

• Marj the state of the channel Cki as all the messages that have arrived on it since
recording was turned on for Cki

43

Chandy-Lamport Snapshot Algorithm

Algorithm terminates when
• All the processes have received a Marker to record their own state
• All the process have received a Marker on all the (N – 1) incoming channels to

record the state of all the channels

A central authority(server/entity) may collect all the local state of the
processes and the communication channels to obtain the full global
snapshot
Any run of the algorithm creates a consistent cut

44

Chandy-Lamport Snapshot Algorithm Example

45

