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Today’s Agenda

Architecture (contd..)
Communication

• Fundamentals
• Remote Procedure Calls
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Computation vs. Communication

Processes/Threads/VMs/Nodes perform computation 
They alone cannot comprise the Distributed System
The interaction between the computational components make any 
system a distributed system

• Like human beings and society

Some methodology needed to let the computational components 
interact
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Communication

Communication not a prerogative for distributed systems only
• Single node/process can communicate using function calls, IPC, etc.

Communication paradigms describe and classify a set of methods by which 
computational nodes can interact and exchange data
Communication involves many problems/issues

• Physical transmission to application level
• Need to standardize to make things easy

OSI (Open Systems Interconnection) Reference Model
• Designed to allow open systems to communication
• Rules for communications called protocols
• 7 layers

4



OSI Model

Physical Layer – Contains the 
specification and implementation of 
bits and their transmission between 
sender and receiver
Data Link Layer – Prescribes the 
transmission of a series of bits into a 
frame to allow for error and flow 
control (transmission errors)
Network Layer – Describes how 
packets in a network of computers 
are routed
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OSI Model

Transport Layer – Contains the 
protocols for directly supporting 
applications; establish reliable 
communication, support real-time 
streaming of data, etc.
Two standard protocols

• TCP – Connection-oriented, reliable, 
stream-oriented protocol

• UDP – Unreliable (best-effort) 
datagram protocol
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OSI Model

Session Layer – Provides support for 
sessions between applications
Presentation Layer – Prescribes how 
data is represented in a way that is 
independent of the hosts on which 
communication applications are 
running
Application Layer – Represents 
everything else related to the 
applications (email-protocols, web-
access, file-transfer, etc.)
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Message in OSI Reference Model

8

Data link 
layer trailer



OSI Model ≠ OSI Protocols

OSI Model
• Perfect to understand and describe communication systems through layers
• Problems exists w.r.t middleware layers

OSI Protocols not practical; never successful
TCP/IP dominates over OSI Protocols
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Middleware Protocols

Middleware mostly attached to applications
Middleware service protocols different from application-level protocols
Middleware Protocols are application-independent unlike application-
level protocols
Session & Presentation layers replaced by middleware layer and is 
application-independent 

• Transport layer could be offered in the middleware layer
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Types of Communication

Persistent vs Transient
Persistent à Message sent is 
stored by the middleware until 
it is delivered to the receiver; 
Example – Email server
Transient à Message sent is 
stored by the middleware only 
as long as both the receiver and 
sender executing; Example – 
RPC
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Types of Communication (contd…)

Asynchronous vs. Synchronous
Asynchronous à Sender keeps 
on executing after sending a 
message
Synchronous à Sender blocks 
execution after sending a 
message and waits for response; 
3 levels of responses
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Classification of Communication Paradigms
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Three categories
• Same address space – Global Variables, Procedure calls
• Different address spaces (Within a computer) – Files, Shared Memory, Signals
• Different address space (Multiple computers) – Shared Memory, Message 

Passing – RPC, sockets



Distributed Shared Memory
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Message Passing

Assume no explicit sharing of data elements in the address space of 
computational components
Essence of message passing is copying

• Implementation may avoid copying wherever possible

Problem-solving with messages – more active involvement by 
participants
Send and Receive two main primitives
Client<—>Server interaction
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Socket Programming

Socket – Software structure that 
serves as endpoint for sending and 
receiving data across the network
Several APIs to interact with 
sockets
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Operation Description

socket Create a new communication end point

bind Attach a local address to a socket

listen Tell OS what is the maximum number of pending 
connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection



Socket Code in Python
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Remote Procedure Call

Allow remote services to be called as procedures
• Transparency with respect to location, implementation, 

language, etc.
Goal is to make distributed computing look like 
centralized computing
Basic Idea

• Programs can call procedures on other machines
• When process A calls a procedure foo() on machine B, A is 

suspended
• Execution of foo() takes place on machine B
• After execution of foo(), the result is sent back to A, which 

resumes execution
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Procedure Call to Remote Procedure Call
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Procedure Call to Remote Procedure Call
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Procedure Call to Remote Procedure Call



RPC – Challenges 

Separate callee and caller address space
• How to transfer data?
• Need for a common reference space

Machines may be different
• Parameters and results must be passed and handled correctly

Thousands of procedures exported by servers
• How does client locate a server?

Client and server might fail independently
• How to handle failures?
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Parameter Passing

Marshalling/Packing – Parameters passed into a message to be 
transmitted
Both parameters and results must be marshalled
Two types of parameters

• Value – directly encoded into the message
• Reference – Can lead to incorrect results (or crash); Solutions??? 

Client and Server stub takes care of marshalling
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Parameter Passing (contd…)
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Data Representation

Different micro-architecture and OS
• Size of data-type differs – size of long in 32-bit vs. 64-bit machines
• Format in which data is stored – Little-endian vs. Big-endian

Client and server must agree on how simple data is represented in the 
message

• Rely on Interface Definition Language (IDL) for the specification
• Stub compiler generates stub automatically from the specification
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Binding

Binder
• Use bindings to let clients locate a server

Server
• Export server interfaces during initialization
• Send name, version number, unique identifier, handle to a binder

Client
• Send message to binder to import server interface
• Binder will check to see if a server has exported valid interface
• Return handle and unique identified to client

Binding may incur overhead
• Multiple binders – Replicate binding information; More availability; Load Balancing
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Failure Handling

Next Class…
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Asynchronous RPC

Request-reply behavior may not be 
needed

• Blocking may waste resources

Asynchronous behavior – Client 
continue without waiting for an answer 
from the server
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Demo
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