
Distributed Systems
Fall 2024

Yuvraj Patel



Today’s Agenda

Architecture (contd..)
Communication

• Fundamentals
• Remote Procedure Calls

2



Computation vs. Communication

Processes/Threads/VMs/Nodes perform computation 
They alone cannot comprise the Distributed System
The interaction between the computational components make any 
system a distributed system

• Like human beings and society

Some methodology needed to let the computational components 
interact

3



Communication

Communication not a prerogative for distributed systems only
• Single node/process can communicate using function calls, IPC, etc.

Communication paradigms describe and classify a set of methods by which 
computational nodes can interact and exchange data
Communication involves many problems/issues

• Physical transmission to application level
• Need to standardize to make things easy

OSI (Open Systems Interconnection) Reference Model
• Designed to allow open systems to communication
• Rules for communications called protocols
• 7 layers

4



OSI Model

Physical Layer – Contains the 
specification and implementation of 
bits and their transmission between 
sender and receiver
Data Link Layer – Prescribes the 
transmission of a series of bits into a 
frame to allow for error and flow 
control (transmission errors)
Network Layer – Describes how 
packets in a network of computers 
are routed

5



OSI Model

Transport Layer – Contains the 
protocols for directly supporting 
applications; establish reliable 
communication, support real-time 
streaming of data, etc.
Two standard protocols

• TCP – Connection-oriented, reliable, 
stream-oriented protocol

• UDP – Unreliable (best-effort) 
datagram protocol

6



OSI Model

Session Layer – Provides support for 
sessions between applications
Presentation Layer – Prescribes how 
data is represented in a way that is 
independent of the hosts on which 
communication applications are 
running
Application Layer – Represents 
everything else related to the 
applications (email-protocols, web-
access, file-transfer, etc.)

7



Message in OSI Reference Model

8

Data link 
layer trailer



OSI Model ≠ OSI Protocols

OSI Model
• Perfect to understand and describe communication systems through layers
• Problems exists w.r.t middleware layers

OSI Protocols not practical; never successful
TCP/IP dominates over OSI Protocols

9



Middleware Protocols

Middleware mostly attached to applications
Middleware service protocols different from application-level protocols
Middleware Protocols are application-independent unlike application-
level protocols
Session & Presentation layers replaced by middleware layer and is 
application-independent 

• Transport layer could be offered in the middleware layer

10



Types of Communication

Persistent vs Transient
Persistent à Message sent is 
stored by the middleware until 
it is delivered to the receiver; 
Example – Email server
Transient à Message sent is 
stored by the middleware only 
as long as both the receiver and 
sender executing; Example – 
RPC

11



Types of Communication (contd…)

Asynchronous vs. Synchronous
Asynchronous à Sender keeps 
on executing after sending a 
message
Synchronous à Sender blocks 
execution after sending a 
message and waits for response; 
3 levels of responses

12



Classification of Communication Paradigms

13

Three categories
• Same address space – Global Variables, Procedure calls
• Different address spaces (Within a computer) – Files, Shared Memory, Signals
• Different address space (Multiple computers) – Shared Memory, Message 

Passing – RPC, sockets



Distributed Shared Memory

14



Message Passing

Assume no explicit sharing of data elements in the address space of 
computational components
Essence of message passing is copying

• Implementation may avoid copying wherever possible

Problem-solving with messages – more active involvement by 
participants
Send and Receive two main primitives
Client<—>Server interaction

15



Socket Programming

Socket – Software structure that 
serves as endpoint for sending and 
receiving data across the network
Several APIs to interact with 
sockets

16

Operation Description

socket Create a new communication end point

bind Attach a local address to a socket

listen Tell OS what is the maximum number of pending 
connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection



Socket Code in Python

17



Remote Procedure Call

Allow remote services to be called as procedures
• Transparency with respect to location, implementation, 

language, etc.
Goal is to make distributed computing look like 
centralized computing
Basic Idea

• Programs can call procedures on other machines
• When process A calls a procedure foo() on machine B, A is 

suspended
• Execution of foo() takes place on machine B
• After execution of foo(), the result is sent back to A, which 

resumes execution

18



Procedure Call to Remote Procedure Call

19



20

Procedure Call to Remote Procedure Call



21

Procedure Call to Remote Procedure Call



RPC – Challenges 

Separate callee and caller address space
• How to transfer data?
• Need for a common reference space

Machines may be different
• Parameters and results must be passed and handled correctly

Thousands of procedures exported by servers
• How does client locate a server?

Client and server might fail independently
• How to handle failures?

22



Parameter Passing

Marshalling/Packing – Parameters passed into a message to be 
transmitted
Both parameters and results must be marshalled
Two types of parameters

• Value – directly encoded into the message
• Reference – Can lead to incorrect results (or crash); Solutions??? 

Client and Server stub takes care of marshalling

23



Parameter Passing (contd…)

24



Data Representation

Different micro-architecture and OS
• Size of data-type differs – size of long in 32-bit vs. 64-bit machines
• Format in which data is stored – Little-endian vs. Big-endian

Client and server must agree on how simple data is represented in the 
message

• Rely on Interface Definition Language (IDL) for the specification
• Stub compiler generates stub automatically from the specification

25



Binding

Binder
• Use bindings to let clients locate a server

Server
• Export server interfaces during initialization
• Send name, version number, unique identifier, handle to a binder

Client
• Send message to binder to import server interface
• Binder will check to see if a server has exported valid interface
• Return handle and unique identified to client

Binding may incur overhead
• Multiple binders – Replicate binding information; More availability; Load Balancing

26



Failure Handling

Next Class…

27



Asynchronous RPC

Request-reply behavior may not be 
needed

• Blocking may waste resources

Asynchronous behavior – Client 
continue without waiting for an answer 
from the server

28



Demo

29


