
Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

Consensus
• Basics
• Paxos and Raft

Leader Election
Next Class is on Tuesday(22/10) and not Monday(21/10)

2

Why Consensus?

Multiple use-cases
• Replication – make sure the replicated data is same on all the nodes
• Failure Detection – a machine/leader has failed/stopped responding
• Leader Election – elect a leader to initiate a snapshot, etc.
• and many more…

All the above scenarios involve
• Multiple parties
• Presence of faults
• Coordinate amongst themselves
• Need to agree to something or arrive at a decision

Consensus Problem – Single value formulation

3

Consensus Protocol

Consider a distributed system with n nodes
• Each node i has an input xi

• Faults may happen at arbitrary times

Output
• All nodes agree on a single value; Value cannot change later

Guarantee the following
• Termination: Every non-faulty node eventually decides
• Agreement: All non-faulty nodes decide on the same value
• Validity: The decided value must be the input of at least one node

4

Consensus Protocol (contd…)

Not democratic; Value proposed by a small minority can be decided
Consensus possible depends on multiple parameters
Most important parameters

• System Model – Synchronous or Asynchronous
• Fault types – Crash or Byzantine

5

Synchronous vs. Asynchronous Systems

6

Synchronous systems
• Process execution speeds and message delivery times are bounded
• Can detect omission and timing failures

Asynchronous systems
• No assumptions about process execution speed or message delivery times
• Cannot reliably detect crash failures

Consensus
• Challenging in Asynchronous systems
• Solvable in Synchronous systems
• Algorithm for Asynchronous systems will work for Synchronous systems

Impossibility in Asynchronous Systems

Fischer, Nancy & Paterson show it is impossible to achieve consensus in
asynchronous system with a single faulty process
They prove that no asynchronous algorithm for agreeing on a one-bit
value can guarantee that it will terminate in the presence of crash
faults

• With no crash too, algorithm may not terminate
• Proof constructs infinite non-terminating runs

One of the most fundamental results in distributed systems.
• Interested students can check the FLP paper --

https://dl.acm.org/doi/pdf/10.1145/3149.214121

7

https://dl.acm.org/doi/pdf/10.1145/3149.214121

How To Solve Consensus Then…

Paxos algorithm – Invented by Leslie Lamport
Most popular consensus solving algorithm

• Does not solve consensus problem (FLP still applies)

Used in many real-world systems – Yahoo, Google, etc.
Provides safety and eventual liveness

• Safety – Consensus is not violated
• Liveness – Good chance consensus reached sometime in future; No guarantee

it will terminate

Assume partially synchronous systems to avoid impossibility aspects

8

Paxos Algorithm

Role's node assume
• Proposers: Those who propose values
• Acceptors: Those who accept a proposed value
• Learners: Those who learn the proposed value after a consensus is reached
• One node can play two roles simultaneously

Other assumptions
• Nodes communicate with each other via messages
• Nodes operate independently and at different speed
• Nodes can crash or restart while operating
• Message receipt is asynchronous and can take longer time to be delivered, can be

duplicated, and lost in the network. Messages are never corrupted
For majority, need 2m + 1 nodes to handle m failures

9

Paxos Algorithm – Safety & Liveness

Safety
• Only a single value is chosen
• Only chosen values are learned by nodes
• Only a proposed value can be chosen

Liveness
• Some proposed value eventually chosen if fewer than half of processes fail
• If value is chosen, a process eventually learns it

Paxos is safe but often live

10

Strawman Solutions

Single Acceptor: n proposers, 1 acceptor
• Acceptor accepts first value received
• Problem: Single acceptor single point of failure (no liveness)

Multi Acceptor: n proposers, n acceptors
• Acceptor accept first value it receives

• Problem: Split Vote
• Acceptor accepts every value it receives

• Problem: Conflicting Choices

Remarks: Once a value has been chosen, future proposals must
propose/choose that same value

11

Proposal Numbers & Rounds

Each proposal has a unique number
• Higher numbers take priority over lower numbers (Older proposals rejected)
• Proposers always propose having a proposal number higher than it has

seen/used

Simple Approach: Proposal number = Round Number + Node-ID
• Round Number – Higher than largest round number seen so far
• Need to remember largest round number so far
• Cannot reuse round number value after crash or reboots

12

Phases

Two phases – Prepare & Accept
Prepare Phase

• Find out any chosen values so far
• Block older and uncompleted proposals

Accept Phase
• Inform acceptors to accept a specific value

Analogous to how government passes laws
• Elect leader
• Propose a Bill
• Accept the Bill and turn in to a Law

13

Algorithm – Prepare Phase

Proposer
• Choose proposal number n, send <prepare, n> to acceptors

Acceptor
• Only receiving a prepare message

• If n > nh, where nh is the highest proposal seen so far by the acceptor
 nh = n. (Promise to not accept older proposals)
 If no prior proposal accepted,
 reply <promise, n, NULL>
 Else
 reply <promise, n, (na, va)>
• Else
 Reply <prepare-failed>

14

Algorithm – Accept Phase
Proposer

• If receive promise from majority of the acceptors,
 Determine any earlier chosen value va for na and choose latest value or any
 value v selected by the proposer
 send <accept, n, v> to acceptors

Acceptors
• If n >= nh
 na = nh = n
 va = v
• reply <accept, nh>

Proposer
• When responses received from the majority
 If any nh > n
 Start from prepare phase again
 Else
 Value is chosen

15

Example – Everything works fine

16

Example – Acceptor failure

17

Accept Phase Failure Prepare Phase Failure

Example – Proposed failure

18

Prepare Phase Failure

Example – Proposed failure

19

Accept Phase Failure

Failure Handling Summary

One proposer
• One or more acceptors fail

• Still works as long as majority nodes are up
• Proposer fails in prepare phase

• No-op; another proposed can make progress
• Proposer fails in accept phase

• Another proposer overwrites or finishes the job of failed proposer

Two or more simultaneous proposers
• More complex
• Can lead to livelock (fix with leader election)

20

Multi Paxos

Basic Paxos comprises two rounds
For real-world systems like databases, every single operation needs to
go through Basic Paxos rounds, which is costly
Multi Paxos – Creating a log of agreements

• Assume Proposer is stable
• Use Phase 1 for the Proposer election
• Use Phase 2 multiple times and work on multiple values being accepted

21

Raft – Consensus Protocol

Designed to be easy to understand
Equivalent to Paxos in fault-tolerance and performance
Decomposed into relatively independent sub-problems
Raft vs Paxos

• Paxos – agrees separately on each client operation
• Raft – agrees on each new leader (and on tail of the log); agreement not

required for most client operations

Raft is Paxos optimized for log appends

22

Roles in Raft

A node can be either
• Follower – Passive nodes; They

issue no requests on their
own; Respond to requests
from leaders and candidates

• Candidate – Used to elect a
new leader; Transitions from a
Follower and transitions to a
leader or follower

• Leader – Handles all client
requests

23

High-Level Understanding

24

Leader Election

25

Raft divides time into terms of arbitrary length;
terms are numbered consecutive integers
Each term begins with an election, where one
or more candidates attempts to become a
leader
Two possible outcomes of an election

• Candidates wins with majority; Elected leader for
the term

• Split Votes

Leader Election – Normal Scenario

26

Leader Election – Split Votes

27

Leader Election

Term acts as a logical clock and helps detect obsolete information such
as stale leaders
Each node stores a current term number, increases monotonically
Current terms exchanged while normal communication

• One node’s current term smaller than others, it updates it term to larger value
• If leader/candidate discovers its term is out of date; revert to follower role

If node receives a request with a stale term number, reject the request

28

Log Replication

29

Log entries over time

30

A leader’s log is the ultimate truth
While election, ensure that the leader
has all committed entries
Leader keeps track of each follower's
log
Leader ensures all followers are up to
date

• Either remove uncommitted log
entries or append to log entries

Log entries over time (…contd)

31

Different possibilities
Missing entries à (a-b)
Extra uncommitted entries à (c-
d)
Missing + Extra uncommitted
entries à (e-f)

Committing Entries From Previous Terms

32

Leader Election Problem

Need to elect leader to perform tasks and broadcast leader details
If leader fails

• Someone will detect leader failed
• Initiate a leader election to elect another leader
• Only one leader elected, and everyone agrees on who is the leader

33

System Model & Assumptions

System Model
• N nodes in the system; each node having unique id
• Communicate via messages; messages will eventually be delivered
• Failures/crashes may happen at arbitrary time

Assumptions
• Any node can call for an election
• Any node can call for atmost one election at a time
• Multiple processes can call for an election simultaneously; still lead to a single

leader
• Result independent of who calls for an election

34

Bully Algorithm

Key Idea: Node with highest ID wins
Consider N nodes {N0, N1, N2… Nn}.
Whenever a node Nk notices that the leader is unresponsive, election
initiated

• Nk sends an ELECTION message to all the processes with higher IDs: Nk+1,… Nn
• If no one responds, Nk wins
• If one of the higher-up’s answers, it takes over and Nk‘s job is done

35

Example

36

Ring Algorithm

Nodes are organized into a ring. Process with highest id is elected as
coordinator
Whenever a node Nk notices that the leader is unresponsive, election
initiated

• Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passe don the next successor

• If a message is passed on, the sender adds itself to the list.
• When the message gets back to the initiator, everyone had a chance to make

its presence known.
• The initiator sends a coordinator message around the ring containing a list of

all the living nodes. The one with the highest id is elected as coordinator

37

Example

38

The solid line shows the
election messages initiated
by N6
The dashed one is election
messages initiated by P3

Both have the same list so it
is safe to have two nodes
initiating an election

