Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

Consensus
* Basics
* Paxos and Raft

Leader Election
Next Class is on Tuesday(22/10) and not Monday(21/10)

Why Consensus?

Multiple use-cases
e Replication — make sure the replicated data is same on all the nodes
* Failure Detection —a machine/leader has failed/stopped responding
* Leader Election — elect a leader to initiate a snapshot, etc.
* and many more...

All the above scenarios involve

Multiple parties

Presence of faults

Coordinate amongst themselves

Need to agree to something or arrive at a decision

Consensus Problem — Single value formulation

Consensus Protocol

Consider a distributed system with n nodes
* Each node i has aninput x;
* Faults may happen at arbitrary times

Output
* All nodes agree on a single value; Value cannot change later

Guarantee the following
* Termination: Every non-faulty node eventually decides
e Agreement: All non-faulty nodes decide on the same value
 Validity: The decided value must be the input of at least one node

Consensus Protocol (contd...)

Not democratic; Value proposed by a small minority can be decided
Consensus possible depends on multiple parameters

Most important parameters
e System Model — Synchronous or Asynchronous
* Fault types — Crash or Byzantine

Synchronous vs. Asynchronous Systems

Synchronous systems
* Process execution speeds and message delivery times are bounded

e Can detect omission and timing failures

Asynchronous systems
* No assumptions about process execution speed or message delivery times
e Cannot reliably detect crash failures

Consensus
* Challenging in Asynchronous systems

* Solvable in Synchronous systems
* Algorithm for Asynchronous systems will work for Synchronous systems

Impossibility in Asynchronous Systems

Fischer, Nancy & Paterson show it is impossible to achieve consensus in
asynchronous system with a single faulty process

They prove that no asynchronous algorithm for agreeing on a one-bit
value can guarantee that it will terminate in the presence of crash

faults
* With no crash too, algorithm may not terminate

* Proof constructs infinite non-terminating runs

One of the most fundamental results in distributed systems.

* Interested students can check the FLP paper --
https://dl.acm.org/doi/pdf/10.1145/3149.214121

https://dl.acm.org/doi/pdf/10.1145/3149.214121

How To Solve Consensus Then...

Paxos algorithm — Invented by Leslie Lamport

Most popular consensus solving algorithm
* Does not solve consensus problem (FLP still applies)

Used in many real-world systems — Yahoo, Google, etc.

Provides safety and eventual liveness

» Safety — Consensus is not violated
* Liveness — Good chance consensus reached sometime in future; No guarantee
it will terminate

Assume partially synchronous systems to avoid impossibility aspects

Paxos Algorithm

Role's node assume
* Proposers: Those who propose values
* Acceptors: Those who accept a proposed value
* Learners: Those who learn the proposed value after a consensus is reached
* One node can play two roles simultaneously

Other assumptions
* Nodes communicate with each other via messages
* Nodes operate independently and at different speed
* Nodes can crash or restart while operating

* Message receipt is asynchronous and can take longer time to be delivered, can be
duplicated, and lost in the network. Messages are never corrupted

For majority, need 2m + 1 nodes to handle m failures

Paxos Algorithm — Safety & Liveness

Safety
* Only a single value is chosen
* Only chosen values are learned by nodes
* Only a proposed value can be chosen

Liveness
* Some proposed value eventually chosen if fewer than half of processes fail
* |f value is chosen, a process eventually learns it

Paxos is safe but often live

Strawman Solutions

Single Acceptor: n proposers, 1 acceptor
» Acceptor accepts first value received
* Problem: Single acceptor single point of failure (no liveness)

Multi Acceptor: n proposers, n acceptors

* Acceptor accept first value it receives
* Problem: Split Vote

* Acceptor accepts every value it receives
* Problem: Conflicting Choices

Remarks: Once a value has been chosen, future proposals must
propose/choose that same value

Proposal Numbers & Rounds

Each proposal has a unique number
e Higher numbers take priority over lower numbers (Older proposals rejected)
* Proposers always propose having a proposal number higher than it has
seen/used
Simple Approach: Proposal number = Round Number + Node-ID
* Round Number — Higher than largest round number seen so far
* Need to remember largest round number so far
e Cannot reuse round number value after crash or reboots

Phases

Two phases — Prepare & Accept

Prepare Phase
* Find out any chosen values so far
* Block older and uncompleted proposals

Accept Phase
* Inform acceptors to accept a specific value

Analogous to how government passes laws
* Elect leader
* Propose a Bill
e Accept the Bill and turn in to a Law

Algorithm — Prepare Phase

Proposer
* Choose proposal number n, send <prepare, n> to acceptors

Acceptor

* Only receiving a prepare message
* If n>n,, where n, is the highest proposal seen so far by the acceptor
n, = N. (Promise to not accept older proposals)
If no prior proposal accepted,
reply <promise, n, NULL>
Else
reply <promise, n, (n,, v,)>
* Else
Reply <prepare-failed>

Algorithm — Accept Phase

Proposer
* If receive promise from majority of the acceptors,
Determine any earlier chosen value v, for n, and choose latest value or any
value v selected by the proposer
send <accept, n, v> to acceptors

Acceptors
* Ifn>=n,
n,=ny=n
V,=V
* reply <accept, n,>
Proposer
* When responses received from the majority
If any n,>n
Start from prepare phase again
Else
Value is chosen

Example — Everything works fine

Example — Acceptor failure

Accept Phase Failure Prepare Phase Failure

Example — Proposed failure

Prepare Phase Failure

Example — Proposed failure

Accept Phase Failure

Failure Handling Summary

One proposer
* One or more acceptors fail
* Still works as long as majority nodes are up
* Proposer fails in prepare phase
* No-op; another proposed can make progress
* Proposer fails in accept phase

* Another proposer overwrites or finishes the job of failed proposer
Two or more simultaneous proposers

* More complex
* Can lead to livelock (fix with leader election)

Multi Paxos

Basic Paxos comprises two rounds

For real-world systems like databases, every single operation needs to
go through Basic Paxos rounds, which is costly

Multi Paxos — Creating a log of agreements

e Assume Proposer is stable
* Use Phase 1 for the Proposer election
* Use Phase 2 multiple times and work on multiple values being accepted

Raft — Consensus Protocol

Designed to be easy to understand
Equivalent to Paxos in fault-tolerance and performance

Decomposed into relatively independent sub-problems

Raft vs Paxos
* Paxos — agrees separately on each client operation

» Raft —agrees on each new leader (and on tail of the log); agreement not
required for most client operations

Raft is Paxos optimized for log appends

Roles in Raft

A node can be either

* Follower — Passive nodes; They
issue no requests on their
own; Respond to requests
from leaders and candidates

times out,
startsup timesout, new election
starts election

receives votes from
majority of servers

* Candidate — Used to elect a 7
new leader; Transitions from a Follower (Candidate) C Leader)

Follower and transitions to a K_K J
leader or follower ,
discovers current discovers server

e Leader — Handles all client
leader or new term with higher term
requests

High-Level Understanding

Leader Election

Raft divides time into terms of arbitrary length;
terms are numbered consecutive integers

Each term begins with an election, where one
or more candidates attempts to become a ormi term2 13
leader

Sl |

Two possible outcomes of an election

* Candidates wins with majority; Elected leader for election normal no emerging
the term operation leader

* Split Votes

term 4

terms

25

Leader Election — Normal Scenario

Leader Election — Split Votes

Leader Election

Term acts as a logical clock and helps detect obsolete information such
as stale leaders

Each node stores a current term number, increases monotonically

Current terms exchanged while normal communication

* One node’s current term smaller than others, it updates it term to larger value
* |f leader/candidate discovers its term is out of date; revert to follower role

If node receives a request with a stale term number, reject the request

Log Replication

Log entries over time

A leader’s log is the ultimate truth

While election, ensure that the leader
has all committed entries

Leader keeps track of each follower's
log

Leader ensures all followers are up to
date

* Either remove uncommitted log
entries or append to log entries

1 2 3 4 5 6 7 8
1 1 1 2 3 3 3 3
X3 |yellye9 | xe2 | x<0|y«7 | X5 x4

1 1 1 2 3
Xe3|lyellye9|x<2|x<0

1 1 1 2 3 3 3 3
Xe3|yellye9|xe2 | xe<0|y«T7|x<5|x<4

1 1
xe3|ly<1l

1 1 1 2 3 3 3
Xe3|yellye9 | xe2 | x<0|y«7| x5

x

committed entries

X

log index

leader

> followers

Log entries over time (...contd)

Different possibilities 1 23 456 7 8 9101112 log index

Missing entries = (a-b) 1[1]1]4]4[5][5]6]6]6 eader for

Extra uncommitted entries =2 (c-

d) ((@) 1111]1(4]|4|5]|5|6]|6)

. . (b

Missing + Extra uncommitted S EIEE,

entries = (e-f) (@ |1]1[{1[{4[{4][5]5 6]6 > possible
@ [T]1]1[4]4]5]5 7[7] [followers
(e) 11111114|14|14|4
f [1{1]112]|2]|2|3]|3|3|3]|3)

1] 2] 4]

1|3

- .-y - - .. - ... et

2
1 3
1 3
14 3
3

1{3

2
2
|2

1
1
1
1
1

Committing Entries From Previous Terms
1 2 3
1|2
1] 2
1

N AN [N

— je=i] || || || |
— (N M < W
vy unvL vV VY O

32

Leader Election Problem

Need to elect leader to perform tasks and broadcast leader details

If leader fails
* Someone will detect leader failed
* |Initiate a leader election to elect another leader
* Only one leader elected, and everyone agrees on who is the leader

System Model & Assumptions

System Model
* N nodes in the system; each node having unique id
« Communicate via messages; messages will eventually be delivered
* Failures/crashes may happen at arbitrary time
Assumptions
* Any node can call for an election
* Any node can call for atmost one election at a time

* Multiple processes can call for an election simultaneously; still lead to a single
leader

* Result independent of who calls for an election

Bully Algorithm

Key Idea: Node with highest ID wins

Consider N nodes {N,, N;, N, N_}.
Whenever a node N, notices that the leader is unresponsive, election
initiated

* Ny sends an ELECTION message to all the processes with higher IDs: Ny,4,... N

* If no one responds, N, wins
* If one of the higher-up’s answers, it takes over and N, ‘s job is done

Ring Algorithm

Nodes are organized into a ring. Process with highest id is elected as
coordinator

Whenever a node N, notices that the leader is unresponsive, election
initiated
* Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passe don the next successor
* If a message is passed on, the sender adds itself to the list.

* When the message gets back to the initiator, everyone had a chance to make
its presence known.

* The initiator sends a coordinator message around the ring containing a list of
all the living nodes. The one with the highest id is elected as coordinator

[6,0]

Example

6,0,1]

Y [34,56.0,1]

{134,560]

[6,0,1,2]

[3,4,5,6,0,1,2]

6,0,1,2,3]

6,0,1,2,3,4,5]

6,0,1,2,3,4]

The solid line shows the
election messages initiated
by N

The dashed one is election
messages initiated by P;

Both have the same list so it

is safe to have two nodes
initiating an election

38

