
Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

Leader Election
Mutual Exclusion
• Basics
• Locks

Coursework Discussion
Next Class is on Tuesday(29/10) and not Monday(28/10)

2

Leader Election Problem

Need to elect leader to perform tasks and broadcast leader details
If leader fails
• Someone will detect leader failed
• Initiate a leader election to elect another leader
• Only one leader elected, and everyone agrees on who is the leader

3

System Model & Assumptions

System Model
• N nodes in the system; each node having unique id
• Communicate via messages; messages will eventually be delivered
• Failures/crashes may happen at arbitrary time

Assumptions
• Any node can call for an election
• Any node can call for atmost one election at a time
• Multiple processes can call for an election simultaneously; still lead to a single

leader
• Result independent of who calls for an election

4

Bully Algorithm

Key Idea: Node with highest ID wins
Consider N nodes {N0, N1, N2… Nn}.
Whenever a node Nk notices that the leader is unresponsive, election
initiated
• Nk sends an ELECTION message to all the processes with higher IDs: Nk+1,… Nn

• If no one responds, Nk wins
• If one of the higher-up’s answers, it takes over and Nk‘s job is done

5

Example

6

Ring Algorithm

Nodes are organized into a ring. Process with highest id is elected as
coordinator
Whenever a node Nk notices that the leader is unresponsive, election
initiated
• Any process can start an election by sending an election message to its

successor. If a successor is down, the message is passed on the next successor
• If a message is passed on, the sender adds itself to the list.
• When the message gets back to the initiator, everyone had a chance to make

its presence known.
• The initiator sends a coordinator message around the ring containing a list of

all the living nodes. The one with the highest id is elected as coordinator

7

Example

8

The solid line shows the
election messages initiated
by N6
The dashed one is election
messages initiated by P3

Both have the same list so it
is safe to have two nodes
initiating an election

Concurrent Executions

9

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax:

%rip:

thread
control
blocks:

%eax:

%rip:

balance = balance + 1; balance at 0x9cd4 = 100

HW State
/ After
Instr

T1: 0 T1: 1 T1: 2 T1: 3 T2: 0 T2: 1 T2:2 T2:3

0x9cd4

%eax

%rip

Concurrent Executions (contd…)

10

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax:

%rip:

thread
control
blocks:

%eax:

%rip:

balance = balance + 1; balance at 0x9cd4 = 100

HW State
/ After
Instr

T1: 0 T1: 1 T1: 2 T2: 0 T2: 1 T2:2 T2:3 T1: 3

0x9cd4

%eax

%rip

Non-Determinism

Concurrency leads to non-deterministic behavior
• Different results even with same inputs

Race conditions: Specific type of bug
• Sometimes program works fine, sometimes it doesn’t; depends on timing

11

Why Mutual Exclusion?

Want 3 instructions to execute as an uninterruptable group
• Want them to be atomic; appears that all execute at once, or none execute

Uninterruptable group of code is called critical section
More general: Need mutual exclusion for critical sections
• If thread A is in critical section C, thread B isn’t
• It is fine if other threads do unrelated work

12

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

Synchronization

Build higher-level synchronization primitives
Operations that ensure atomic execution
and correct ordering of instructions across
threads
Use help from hardware
Locks are the commonly used
Synchronization primitives

13

Monitors Semaphores
Condition Variables

Locks

Loads
Stores

Test&Set
Disable Interrupts

Motivation: Build them once and get them right

Spinlocks

Goal: Provide mutual exclusion

Allocate and Initialize
• pthread_spinlock_t lock; pthread_spin_init()

Lock() – Acquire the lock for exclusive access to the critical section
• Wait (Spin) until the lock is not available (some other process is holding the lock)
• pthread_ spin_lock()

Unlock() – Release the lock and relinquish the exclusive access
• Let another process access the lock and enter the critical section
• pthread_spin_unlock()

14

Timeline with Spinlock

15

spin_lock()
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123
spin_unlock() mov 0x123, %eax

add %0x1, %eax
mov %eax, 0x123
spin_lock()

spin_lock()

Thread 1 Thread 2

Correct answer: Balance = 2

Balance = 0 (initial value)

Two main properties
• Safety – Nothing bad happens in the system; atomicity needs to be guaranteed; No deadlocks
• Liveness – Eventually something good will happen; atleast one thread will acquire the lock and make forward

progress

Distributed Systems

Cannot share local lock variables
How do we support mutual exclusion in a distributed system?
Let us start simple with a central solution

16

Distributed Lock – Central Solution

System Model
• Each pair of nodes is connected by reliable channels
• Messages are eventually delivered to recipient, and in FIFO order
• Nodes do not fail

Central Solution
• Elect a central leader using election algorithm
• Leader keeps a queue of waiting requests from nodes who wish to access CS

17

Distributed Lock – Central Solution (contd…)

18

Step 1 Step 2 Step 3

Node P1 asks the coordinator
for permission to access a
shared resource. Permission is
granted.

Node P2 then asks permission
to access the same resource.
The Coordinator does not reply.

When P1 releases the resource,
it tells the coordinator, which
then replies to P2.

Distributed Lock – Central Solution (contd…)

19

Step 1 Step 2 Step 3

Node P1 asks the coordinator
for permission to access a
shared resource. Permission is
granted.

Node P2 then asks permission
to access the same resource.
The Coordinator does not reply.

When P1 releases the resource,
it tells the coordinator, which
then replies to P2.

Problems????

Distributed Solution

Decentralized approach
• All nodes involved in the decision making of who should access the resource

Ricart-Agarwala Algorithm
Use the notion of causality – rely on logical timestamps

20

Ricart-Agrawala Algorithm

21

Requestor

1. Broadcast a message to all receiver (including itself)
<Resource-Name, Node-Name, Logical Timestamp>

3. Wait for all the OK messages.
4. Access resources once all receivers send OK message.
5. Release the resource; Send OK message to all queue entries

Receiver

2. If receiver not accessing the resource or does not
 want to access it, send OK message to the sender.
 If the receiver already has access to the resource. Do
 not reply. Queue the request.
 If receiver wants to access the resource but has not
 yet done, compare the timestamp
 If incoming message has lower timestamp:
 send OK message to the sender
 Else:
 Queue the incoming request and
 send nothing

Ricart-Agrawala Algorithm Example

22

Step 1 Step 2 Step 3

Step 1: Two nodes want to access a shared resource at the same moment.
Step 2: P0 has the lowest timestamp, so it wins.
Step 3: When process P0 is done, it sends an OK message to P2. P2 can access the resource thereafter.

Ricart-Agrawala Algorithm Example

23

Step 1 Step 2 Step 3

Step 1: Two nodes want to access a shared resource at the same moment.
Step 2: P0 has the lowest timestamp, so it wins.
Step 3: When process P0 is done, it sends an OK message to P2. P2 can access the resource thereafter.

Problems????

Token Ring Algorithm

All nodes arranged in a ring fashion
Use token as a means of ownership
• Whosoever has the token can access the

resource
• If no access needed, pass it on to the

neighbor
• Token gets passed to all the nodes

24Problems????

Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does
Deadlocks can only happen with these four conditions

1. Mutual Exclusion
2. Hold-and-wait
3. No preemption
4. Circular Wait

25

ST
O
P

STOP

STO
P

STOP

AB

CD

Deadlock Example – Real World Case

26

ST
O
P

STOP
STO

P

STOP

A

B

Both cars arrive at same time
Is this deadlocked?

Conditions necessary for a deadlock:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

Deadlock Example – Real World Case (contd..)

27

ST
O
P

STOP
STO

P

STOP
A

B

C

D

Conditions necessary for a deadlock:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

4 cars arrive at same time
Is this deadlocked?

Deadlock Example – Real World Case (contd..)

28

Conditions necessary for a deadlock:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

4 cars arrive at same time
Is this deadlocked?

ST
O
P

STOP
STO

P

STOP
AB

CD

Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does
Deadlocks can only happen with these four conditions

1. Mutual Exclusion
2. Hold-and-wait
3. No preemption
4. Circular Wait

Can eliminate deadlock by eliminating any one
condition

29

ST
O
P

STOP

STO
P

STOP

AB

CD

Eliminate Hold-And-Wait Condition

Problem: Nodes hold resources while waiting for additional resources
Deadlock Prevention Strategy
• Acquire all the locks atomically
• Can release locks over time, but cannot acquire again until all locks have been

released

How?
• Use a meta lock

30

Eliminate Hold-And-Wait Condition (contd…)

31

lock(&meta);
lock(&L1);
lock(&L2);
lock(&L3);
…
unlock(&meta);
// CS1
unlock(&L1);
// CS 2
Unlock(&L2);

lock(&meta);
lock(&L2);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

// CS2
Unlock(&L2);

lock(&meta);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

Eliminate Hold-And-Wait Condition (contd…)

Disadvantages
• Must know ahead of time

which locks will be needed
• Must be conservative (acquire

any lock possibly needed)
• Degenerates to just having one

big lock (reduces concurrency)

32

lock(&meta);
lock(&L1);
lock(&L2);
lock(&L3);
…
unlock(&meta);
// CS1
unlock(&L1);
// CS 2
Unlock(&L2);

lock(&meta);
lock(&L2);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

// CS2
Unlock(&L2);

lock(&meta);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

Eliminate No Preemption Condition

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
 lock(A);
 if (trylock (B) == -1) {
 unlock(A);
 goto top;
 }

33

Eliminate No Preemption Condition (contd…)

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
 lock(A);
 if (trylock (B) == -1) {
 unlock(A);
 goto top;
 }

34

Livelock:
No processes make progress, but state of
involved processes constantly changes
Classic solution: Exponential random
back-off

Eliminate No Preemption Condition

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
 lock(A);
 if (trylock (B) == -1) {
 unlock(A);
 goto top;
 }

35

Other strategy: Use timeouts instead of
trylock. If lock not acquired within a
timeout, release locks
Problem: How long should be the
timeout?

Detect Circular Wait Dependency

Another strategy is to detect deadlocks
Find cycles in the wait graphs
• Take snapshots using Global Snapshot Algorithm
• Detect cycles in the snapshot
• Abort tasks to break the cycle

36

Coursework Questions

37

