
Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

Transactions
Replication
• General stuff
• Data-Centric Consistency Models

Next Class Monday(4/11)

2

Transactions

Series of operations executed by clients
Operations may be locally executed or
via an RPC to a server
Transactions either commits or aborts
• Commit – An operation completes and

reflect updates on server-side data
• Abort – An operation fails/aborts and has

no effect on the server

3

Transactions

Series of operations executed by clients
Operations may be locally executed or
via an RPC to a server
Transactions either commits or aborts
• Commit – An operation completes and

reflect updates on server-side data
• Abort – An operation fails/aborts and has

no effect on the server

4

int transaction_id = transaction_start()

curr_balance = server.getbalance(“XYZA”);
If (curr_balance > transfer_amount)
 server.withdraw(“XYZA”, curr_balance
 – transfer_amount);
 server.deposit(“ABCD”,
 transfer_amount);

transaction_close()

ACID Properties

All transactions adhere to ACID Properties
• Atomicity – All or Nothing

• Transaction either commits or aborts
• Consistency – Follow the Rules

• Transaction does not violate system invariants
• Isolation – Mind Your Own Business

• Concurrent transactions do not interfere with each other
• Persistence – Remember Everything

• Once a transaction commits, the changes are permanent

5

Issues with Transactions – Lost-Update

6

Balance
A = $100
B = $200
C = $300

Issue with Transactions – Inconsistent Retrieval

7

Balance
A = $200
B = $200
C = $200

Concurrent Transactions

Multiple transactions execute concurrently in real-world
To prevent transaction from affecting each other
• Serially execute transactions one at a time

• Slow; Not efficient;
• Would you be a customer of such a slow service? 🙄

Ideally, we want to increase concurrency while maintaining ACID
properties

8

Serial Equivalence Interleaving

If each of several transactions is known to have the correct effect when
it is done on its own, then we can infer that if these transactions are
done one at a time in some order the combined effect will also be
correct.
Serially Equivalent Interleaving – An interleaving of the operations of
transactions in which the combined effect is the same as if the
transactions had been performed one at a time in some order.

9

Conflicting Operations

A pair of operations conflicts means the combined effect depends on
the other in which they are executed
Conflict rules for read and write

10

Resolving conflicts

Reactive approach – check for serial equivalence at commit time with
all other transactions
• Only bother about overlapping transactions

If not serially equivalent
• Abort the transaction

Can we do better?
• Prevent violations from occurring

Two approaches – Pessimistic and Optimistic

11

Pessimistic vs. Optimistic

Pessimistic: Assume the worst; prevent transactions from accessing the
same objects
• Better when data is updated/written frequently
• Use locks for exclusive access
• Use Reader-Writer Locks to improve performance; Readers can run

concurrently; Writers have exclusive access
Optimistic: Assume the best; allow transactions to proceed, but check
later
• Better when data is not updated frequently
• Less chances of aborting the transactions
• Multiple ways – Timestamp Ordering, Multi-version Concurrency Control

12

Distributed Transactions

In a distributed transaction, multiple objects residing on different
servers involved
During commit
• Need to ensure all servers commit their corresponding update
• If one server fails to commit, everyone aborts; Transaction abort happens
• Like consensus problem – everyone agrees for a commit or abort

13

One Phase Commit

14

One Phase Commit

Problems
• Server with objects has no

say in the decision making
• Issues like deadlock

prevention handling, server
crash, etc. could happen
forcing server to abort

• Need a better way

15

Two Phase Commit

16

Replication

Replicate data at one or more sites can help with
• Availability & Fault Tolerance

• If primary server crashes, secondary can takeover => Highly available service
• Mask node crashes => Transparency

• Performance
• Local access faster than remote access; Low latency
• Concurrent Reads can be served from multiple servers improving performance

• Scaling
• Size scalability – Prevent overloading a single server
• Geographical scalability

17

Problems with Replication

Having multiple copies, means that when any copy changes, the change
needs to be propagated to all other copies
Need replicas to have same data, i.e., they should be kept consistent
Efficiently synchronize all replicas a challenging problem

18

Performance & Scalability

Main concern – To keep replicas consistent, we generally need to
ensure that all conflicting operations are done in the same order, across
all servers
Conflicting operations – Recall the read-write and write-write conflicts
Guaranteeing global ordering on conflicting operations may be costly
operation, with impact on scalability
Potential Solution – Weaker consistency requirements to avoid global
synchronization, whenever possible

19

Weakening Consistency Requirements

What does it mean to weaken consistency requirements?
• Relax the requirement that “updates need to be executed as atomic

operations”
• Do not require global synchronizations
• Replicas may not always be the same everywhere and everytime

To what extent can consistency be weakened?
• Depends highly on the access and update patterns of the replicas
• Depends on the replicated data user patterns which is application driven

20

Consistency Models

A consistency model is a contract between the programmer and a
system
• The system guarantees that if the programmer follows the rules for

operations on data, data will be consistent
• Result of the reading, writing, updating data will be predictable

Two consistency models
• Data-centric consistency models – Defines consistency as experienced by all

the clients; provides a system wide consistent view on the data store
• Client-centric consistency models – Defines consistency of the data store only

from one client’s perspective; Different clients might see different sequences
of operations at their replicas

21

Distributed Data Store

Distributed Data Store – Physically distributed & replicated across
multiple machines
• Data can be read from or written by any process on any node
• A local copy helps with faster reads
• A write to a local replica needs to be propagated to all remote replicas

22

Terminology & Notations

Read and write operations
• Wi(x)a: Process Pi writes value a to x
• Ri(x)b: Process Pi reads value b from x
• All data items initially have value NIL

Possible behavior represented over time; time moves from left to right

23

Strict Consistency

With strict consistency, all writes are visible instantaneously to all processes
Any read to a shared data item returns the value stored by the most recent
write operation on that data item

Strictest consistency model – most rigid model
Practical relevance restricted to a thought experiment and formalism

• Relies on absolute global time
• Instantaneous message exchange is impossible

24

P1:
P2:

W(x)a
R(x)a

Strictly Consistent Data Store

P1:
P2:

W(x)a
R(x)aR(x)NIL

Not Strictly Consistent Data Store

Sequential Consistency

Sequential Consistency – The result of any execution is the same as if
the operations by all processes were executed in some sequential order
and the operations of each individual process appear in this sequence
in the order specified by its program
Any valid interleaving of read or write operations is fine, but all
processes must see the same interleaving
• The events observed by each process must globally occur in the same order,

or it is not sequentially consistent

25

Sequential Consistency Example

26

A sequentially consistent data store A data store that is not sequentially consistent

P3 and P4 see the same interleaving of writes P3 and P4 do not see the same interleaving of writes

Sequential Consistency Example

Three concurrent processes, executing concurrently (initial values: 0)

The 6 statements shown can be ordered in 6! = 720 possible ways, with
most orderings are invalid
Analysis shows only 90 possible valid execution sequences exist

27

Process 1 Process 2 Process 3
x = 1; y = 1; z = 1;

print (y, z); print (x, z); print (x, y);

Sequential Consistency – Interleaved
Execution Sequence

The signature is the output of P1, P2, and P3, in that order
Signature can be used to determine whether a given execution
sequence is valid

28

Linearizability

In sequential consistency, absolute time is somewhat irrelevant – the
order of events is most important
Linearizability – Each operation should appear to take effect
instantaneously at some moment between its start and completion
A data store is said to be linearizable when each operation is
timestamped, and the following conditions hold:
• Sequential Consistency holds
• Timestamp(OP1(x)) < Timestamp(OP2(x)) then OP1(x) should precede OP2(x) in

this sequence

29

Sequential Consistency vs. Linearizability

Linearizability is weaker than strict consistency, but stronger than
sequential consistency
Linearizability cares about time; sequential consistency cares about
program order
• With Sequential consistency, the system has freedom of how to interleave

operations coming from different clients, as long as the ordering from each
client is preserved

• With Linearizability, the interleaving across all clients is pretty much
determined already based on the time

30

Causal Consistency

Writes that are potentially causally related must be seen by all
processes in the same order
Concurrent writes may be seen in a different order on different
machines
Example – If event B is a direct or indirect result of another prior event
A, then all processes should observe event A before observing event B

31

Causal Consistency Example

32

A violation of a causally-
consistent store

A correct sequence of events
in a causally-consistent store

Causal Consistency Example

33

Assume W2(x)b and W1(x)c are concurrent

Strictly consistent?
Sequentially consistent?
Causally consistent?

P1:

P2:

P3:

P4:

W(x)a

R(x)a

R(x)a

R(x)a

W(x)b

W(x)c

R(x)c

R(x)b

R(x)b

R(x)c

FIFO Consistency

Writes performed by a single process are seen by all other processes in
the order in which they were issued
Writes from different processes may be seen in a different order by
different processes
FIFO consistency is easy to implement

34

A valid sequence of events of FIFO consistency
(P2’s writes are seen in the correct order)

P1:

P2:

P3:

P4:

W(x)a

R(x)a

R(x)c

R(x)c

W(x)b W(x)c

R(x)b

R(x)a

R(x)a

R(x)b

Data-Centric Consistency -- Strong & Weak
Models
Strong Consistency Models – Operations on shared data are synchronized; do not
require synchronization operations

• Strict Consistency – Absolute time ordering of all shared accesses matters
• Sequential Consistency – All processes see all shared accesses in the same order
• Linearizability – Sequential Consistency + Operations are ordered according to a global time
• Causal Consistency – All processes see causally-related shared accesses in the same order
• FIFO Consistency – All processes see writes from each other in the order they were used

Weak Consistency Models – Synchronization occurs only when shared data is
locked and unlocked; rely on synchronization operations

• Weak Consistency – Shared data can be counted on to be consistent only after a
synchronization is done

• Release Consistency – Shared data are made consistent when a critical region is exited
• Entry Consistency – Shared data pertaining to a critical region are made consistent when a

critical region is entered
Weaker the consistency models, the more scalable it is

35

