
Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

File system basics
Distributed File systems

• Network File System (NFS)
• Andrew File System (AFS)

Next Class Tuesday (19/11)
Coursework Deadline (18/11) @ Noon

2

Coursework Submission

3

File System Basics

File System APIs
File System On-Disk Structures
File System Operations

4

What is a File?

Array of persistent bytes that can be read/written
Two interpretations of file system

• Collection of files (file system image)
• Part of OS that manages those files

• Many local file systems: ext2, ext3, ext4, xfs, zfs, brtfs, f2fs, etc.
• Files are common abstraction across all

Files need names so we can access correct one
• Three types of names – Inode number (unique id), path, file descriptor

5

Inode Number

Each file has exactly one inode number
Inodes are unique (at a given time) within file system image
Different file systems may use the same number
Numbers may be recycled after deletes
See inodes via “ls -i”

• See inode number incrementing as we create new files

6

yuvraj@iMac temp % ls -li
19656510 drwxr-xr-x 2 yuvraj staff 64 Jul 19 18:34 dir1
19656511 -rw-r--r-- 1 yuvraj staff 0 Jul 19 18:34 file1

Finding Inodes

Inodes stored in known, fixed block location on disk
Ondisk structure is called Inode file
Simple math to determine location of particular inode

7

location
size=128
location

size9
location

size10
location
size=611

…

file

file

in
od

e
nu

m
be

r

File Data

Directory

Directory is special file that contains files
Directories are stored very similarly to files
Add a bit to inode to designate if data is
for “file” or “directory”
All files within a directory called as
directory entries

8

Special Directory Entries

9

yuvraj@iMac / % cd /; ls -lia

 2 drwxr-xr-x 20 root wheel 640 Jan 1 2020 .

 2 drwxr-xr-x 20 root wheel 640 Jan 1 2020 ..

 12450924 drwxrwxr-x 23 root admin 736 Jul 17 17:17 Applications

 12428142 drwxr-xr-x 67 root wheel 2144 May 26 00:24 Library

1152921500311879701 drwxr-xr-x@ 9 root wheel 288 Jan 1 2020 System

 21338 drwxr-xr-x 6 root admin 192 Jan 1 2020 Users

 23589 drwxr-xr-x 3 root wheel 96 Jul 19 10:06 Volumes

Accessing Files using API

Multiple sys-calls to access the files
• open() – Open a file for reading, writing, or both

• fd = open (const char* Path, int flags);
• read() – Reads the specified amount of bytes cnt of input into the memory

area indicated by buf
• size_t read (int fd, void* buf, size_t cnt);

• close() – Close a file; Cannot access file after close
• int close(int fd);

...

10

File Descriptor

While opening file, do expensive path traversal
Store the inode in descriptor object (kept in memory)
Do reads/writes via descriptor, which tracks offset
Each process has a file-descriptor table that contains pointers to open
file descriptors
Integers used for file I/O are indexes into the per-process table

• stdin:0, stdout:1, stderr:2

On close(), the descriptor object is removed

11

File Descriptor in Action

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
read(fd2, buf1, 16);

12

0
1
2
3
4
5

offset =
inode =

Descriptor objects
fd table

location = …
size = …

inode

“file.txt” in directory points here
offset =
inode =

stdin
stdout
stderr

File System Empty Disk

13

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

File System On-Disk Structures

Data stored in multiple on-disk structures
• Data block
• Indirect Block
• Inode Table
• Directories
• Data Bitmap
• Inode Bitmap
• Superblock

14

Inode Table & Inode Block

Each inode is typically 256 bytes (depends on the file
system, maybe 128 bytes)
Inode block – 4 KB disk block to store inodes
In a single 4 KB block, we can store 16 inodes
Inode blocks combine to become the Inode Table

15

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Inode, Data and Indirect Blocks

16

type (file or dir?)
uid (owner)

rwx (permissions)
size (in bytes)

Blocks
time (access)
ctime (create)

links_count (# paths)
addrs[N] (N data blocks)

indirectdata data data

Example:
12 direct pointers + 1 single indirect + 1 double indirect
Block size of 4 KB and 4-byte pointers
 (12 + 1024 + 1024*1024) × 4 KB) = 4 GB
Better for small files!
For larger files, rely on double and triple indirect blocks

Inode represents a
file and stores its
data and metadata

Multi-level index

Directory

Format of how data stored varies
Common design

• Store directory entries in data blocks
• Large directories use multiple data blocks
• Use bit in inode to distinguish directories from files

Various formats for directories could be used to store
directory entries

• List with fixed-sized elements to store filenames
• List with variable sized elements to store filenames
• B-Trees to store filenames

17

valid name inode
1
1
1

.
..

foo

134
35
80

1 bar 23

Data Bitmap & Inode Bitmap File

How do we find free data blocks and free inodes?
Use bitmaps to represent free and used blocks/inodes

• One bit designates state of each block/inode
• Set to 1 if allocated, 0 if free

18

D IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Superblock

Superblock is the starting point that stores important information
about the file system

• # of blocks
• # of inodes
• Block size
…. and many more

19

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

create() Flow

20

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

write

write

open() Flow

21

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read
read

read
read

read

read() Flow

22

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

read
read

write() Flow

23

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

read
read
write

write
write

close() Flow

24

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

Types of File Systems

Local file systems (FFS, ext3, ext4, LFS, etc.)
• Processes on same machine access shared files on the machine

Network file systems (NFS, AFS, etc.)
• Processes on different machines access shared files on a different machine
• Many client connect with a nearby single server

25

Goals for Distributed File Systems

Fast + Simple crash recovery
• Both clients and file server may crash

Transparent access
• Can’t tell accesses are over the network
• Normal UNIX semantics

Reasonable performance
• Scale with number of clients

26

Building a Distributing File System

27

Virtual File System (VFS)

VFS is a virtual abstraction like local file
system

• Provides virtual superblocks, inodes, files, and
dentry

• Compatible with a variety of local and remote
file systems

VFS helps in allowing the same system call
interface to be used across different file
systems

• Implementation related to how things work
for each file system is different

28

Network File System (NFS)

Think of NFS as more of a protocol than a particular file system
Many companies have implemented NFS since 1980s

• Oracle/Sun, NetApp, EMC, IBM

We are looking at NFSv2
• Nfsv4 has many changes

Why look at an older protocol?
• Simpler, focused goals (simple crash recovery, stateless)

29

NFS Architecture

30

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC

Local FS

RPC: Remote Procedure Call
Cache individual blocks of NFS files

Cache

Cache Cache

Cache

Exporting NFS

31

Local FSLocal FS

Client Server

NFS

/

backups home

bak1 bak2 bak3

etc bin

yuvraj

DS

CW1 Exam

.bashrc

Where will read to /backups/bak1 go?

/dev/sda1 on /
/dev/sdb1 on /backups
NFS on /home/yuvraj

Where will read to /home/yuvraj/.bashrc go?Client FS

What do Clients Send to Server?

Strategy 1: Wrap regular UNIX system calls using RPC
• open() on client class open() on server
• open() on server returns fd back to client

• read(fd) on client calls read(fd) on server
• read(fd) on server returns data back to client

32

Client Server

Local FSLocal FS NFS
read

What do Clients Send to Server? (contd…)

Strategy 1: Wrap regular UNIX system calls using RPC
Problem: What about server crashes (and reboots)
 int fd = open(“foo”, O_RDONLY);
 read(fd, buf, MAX);
 read(fd, buf, MAX);
 … Server crash
 read(fd, buf, MAX);

33

Local FSLocal FS

Client Server

NFS

client fds
In memoryopen() = 2

read(2)

Recall: What is fd tracking?

What do Clients Send to Server? (contd…)

34

Strategy 1: Wrap regular UNIX system calls using RPC
Problem: What about server crashes (and reboots)
Potential Solutions

• Run some crash recovery protocol when server reboots
• Complex

• Persist fds on server disk
• Slow for disks
• How long to keep fds? What if client crashes or misbehaves?

What do Clients Send to Server? (contd…)

Strategy 2: Every request from client completely describes desired
operation
Use stateless protocol

• Server maintains no state about clients (that is necessary for correctness)
• Server can keep state only for performance (hints or cached copies)
• Can crash and reboot with no correctness problems (just slower performance)

Main idea of NFSv2

35

Local FSLocal FS

Client Server

NFS

What do Clients Send to Server? (contd…)

Strategy 2: Stateless protocol
Need API change; Get rid of fds; One possibility:
 pread(char *path, buf, size, offset);
 pwrite(char *path, buf, size, offset);
Specify path and offset in each message
Server need not remember anything from clients

• Server can crash and reboot transparently to clients

Too many path lookups

36

What do Clients Send to Server? (contd…)

Strategy 3: Stateless protocol + Inode requests
 inode = open(char *path);
 pread(inode, buf, size, offset);
 pwrite(inode, buf, size, offset);
With some new interfaces on server for accessing by inode number
Correctness problem

• Inode not guaranteed to be unique over time
• If file is deleted, the inode could be reused

37

What do Clients Send to Server? (contd…)

Strategy 4: Stateless Protocol + File Handle
 fh = open(char *path);
 pread (fh, buf, size, offset);
 pwrite(fh, buf, size, offset);
File Handle = <volume ID, inode #, generation #>
Opaque to client

• Client should not interpret internals

Generation count is incremented each time inode is allocated to new
file/directory

38

What do Clients Send to Server? (contd…)

Final Strategy: Stateless Protocol + File Handle + Client Logic
Build normal UNIX API on client side on top of RPC-based APIs
Clients maintain their own file descriptors
Client open() creates a local fd object
Local fd object contains

• File handle (returned by server)
• Current offset (maintained by client)

Client sends fh, offset, size to server
Server extracts inode from fh

39

Local FSLocal FS

Client Server

NFS

client fds

read(fd=5, size=1024)

fh=<…>
off=123

pread(fh, 123, 1024)
local

FS

fd 5

Idempotent vs. Non-Idempotent Operations

Append operation adds content at the end of the file
 append(fh, buf, size);
RPC often has “at-least-once” semantics

• May call procedure on server multiple times
• Implementing “exactly once” requires state on server, which we are trying to

avoid

If RPC library replays messages, what happens when append() is retried
on server?

• Could wrongly append() multiple times if server crashes and reboots

40

Idempotent vs. Non-Idempotent Operations

Idempotent Operations
• If f() is idempotent, f() has the same effect as f(); f(); …. f(); f();
• pwrite(), any read operation

Non-Idempotent Operations
• Cannot be retried multiple times
• Append, mkdir, rmdir, creat

41

NFS Caching

With NFS, data can be cached in three places
• Server memory
• Client disk
• Client memory

How to make sure server and all client versions are in sync?

42

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC

Local FS

Cache

Cache Cache

Cache

NFS Caching: Problem 1

NFS server often buffers writes to improve performance
Server might acknowledge write before pushed to disk
What happens if server crashes?

43

Local FS

Client Server

NFS

write

write bufferwrite buffer

NFS Caching: Problem 1 (contd…)

NFS server often buffers writes to improve performance
Server might acknowledge write before pushed to disk
What happens if server crashes?
Solutions:

• Don’t use server write buffer (persist data to disk before acknowledging
write) à Slow

• Use persistent memory à More expensive

44

NFS Caching: Problem 2

Clients must cache some data
• Too slow to always contact server;
• Server would become severe bottleneck

Update visibility problem: Server doesn’t have
latest version
Some clients may see old version (different
semantics than local file system)
When client buffers a write, how can server see
update?

• Client flushes cache entry to server
• When should client perform flush?

45

Local FS

Server

cache: A

Client 1

NFS
cache:

Client 2

NFS
cache:

NFS Caching: Problem 2 (contd…)

When should client perform flush?
Possibilities

• After every write (too slow)
• Periodically after some interval (odd semantics)

NFS Solution
• Flush on close()
• Other times optionally too – e.g., when low on memory

Problems not solved by NFS
• File flushes not atomic (one block of file at a time)
• Two clients flush at once can lead to mixed data

46

NFS Caching: Problem 3

“Stale Cache” Problem
• Clients doesn’t have latest version from server
• Clients may see old version (different semantics

than local FS)

How can it get latest update?
• Maintaining state – push update to relevant clients

Stateless solution
• Clients recheck if cached copy is current before

using data
• Recheck faster than getting data

47

Local FS

Server

cache: B

Client 1

NFS
cache: B

Client 2

NFS
cache: A

NFS Caching: Problem 3 (contd…)

Client cache records time when data block is fetched (t1)
Before using data block, clients sends file STAT request to server

• STAT gets last modified timestamp (t2) for this file
If t2 > t1, then refetch data block
NFS developers found server overloaded

• Found stat accounted for 90% of server requests
Fix

• Client caches result of stat (attribute cache)
• Make stat cache entries expire after a given time (3 seconds)
• Clients could read data that is up to 3 seconds old

48

Andrew File System (AFS)

Andrew File System: Developed at CMU in 1980s
Used in many universities (UoE home directories are AFS backed)
Goals

• More reasonable semantics for concurrent file access
• Improved scalability (many clients per server)
• Willing to sacrifice and statelessness

49

AFS Whole File Caching

Approach
• Measurements show most files are read in entirety
• open(): AFS client fetches whole file, storing in local memory or disk
• close(): Client flushes file to server if file was written

Convenient and intuitive semantics
• Use same version of file entire time between open() and close()

Performance advantages
• AFS needs to do work only for open/close (less load on server)
• Reads/writes are completely local

50

AFS Caching

AFS faces same problem as we discussed with NFS
Update Visibility

• How are updates sent to the server

Stale Cache
• How are other caches kept in sync with server?

51

AFS Caching – Update Visibility

AFS, like NFS, also flush on close
Buffer whole files on local disk; update file on server atomically
But what about concurrent writes?

• Last writer wins (i.e., the last file close wins)
• Newver get data mixed from multiple versions on server unlike NFS

52

AFS Caching: Stale Cache

Stateful solution unlike NFS’ stateless solution
Server tells clients when data is overwritten

• Server must remember which clients have the file open right now

When clients cache data on open(), ask for “callback” from server if file
changes

• Clients can use data during this open() without caching

Clients only verifies callback when open() file (not every read)
• May not refetch file on next open()
• Operate on same version of file from open to close

53

AFS Callbacks: Dealing with State

Callbacks are good to handle the stale cache issue.
What about client and server crashes?

54

AFS Callbacks: Dealing with State (contd…)

Client crash
• After reboot, cached data might be on client disk
• Might read stale data from the cached copy
• Solutions

• Evict everything from cache
• Recheck specific entries before using

Server crash
• Lose track of all clients who have file open
• Solution – Tell all clients to recheck all data before next open

55

NFS vs AFS Protocols

NFS Protocol
Lookup for file AFilehandle

Read

Read

Check cache; attr expired; call
get_attr(); else use local copy

Get_attr()

Get_attr()

Lookup for file AFilehandle

Keep local
Check cache; attr expired; call
get_attr(); else use local copy

Get_attr()

Latest attributes

Latest attributes

Send data to server Write to disk

Check cache; attr expired; call
get_attr(); expired; flush cache;
fresh read again

Get_attr()

Get_attr()
Latest attributes

Check cache; attr expired; call
get_attr(); else use local copy

Get_attr()Latest attributes

Lookup for file AFilehandle

AFS Protocol

When will server be contacted for NFS? For AFS?
What data will be sent? What will each client see?

Setup callback for A, send all
of file A

Local read

Setup callback for A, send all
of file A

Local read

Send back changes of A; Server break call backs

Local read

Local read

No callback; fetch file A again

Local read

Setup callback for A, send all
of file A

