
Distributed Systems
Fall 2024

Yuvraj Patel

Disclaimer: Slides prepared using multiple sources (UW-Madison – Remzi, Andrea, Mike; Cambridge
– Martin Kleepman; Distributed Systems book by MVS/ AST); University of Edinburgh – Yuvraj Patel

Today’s Agenda

Replication
• General Stuff
• Data-Centric Consistency Models
• Client-Centric Consistency Models

2

Replication

Replicate data at one or more sites can help with
• Availability & Fault Tolerance

• If primary server crashes, secondary can takeover => Highly available service
• Mask node crashes => Transparency

• Performance
• Local access faster than remote access; Low latency
• Concurrent Reads can be served from multiple servers improving performance

• Scaling
• Size scalability – Prevent overloading a single server
• Geographical scalability

3

Problems with Replication

Having multiple copies, means that when any copy changes, the change
needs to be propagated to all other copies
Need replicas to have same data, i.e., they should be kept consistent
Efficiently synchronize all replicas a challenging problem

4

Performance & Scalability

Main concern – To keep replicas consistent, we generally need to
ensure that all conflicting operations are done in the same order, across
all servers
Conflicting operations – Recall the read-write and write-write conflicts
Guaranteeing global ordering on conflicting operations may be costly
operation, with impact on scalability
Potential Solution – Weaker consistency requirements to avoid global
synchronization, whenever possible

5

Weakening Consistency Requirements

What does it mean to weaken consistency requirements?
• Relax the requirement that “updates need to be executed as atomic

operations”
• Do not require global synchronizations
• Replicas may not always be the same everywhere and everytime

To what extent can consistency be weakened?
• Depends highly on the access and update patterns of the replicas
• Depends on the replicated data user patterns which is application driven

6

Consistency Models

A consistency model is a contract between the programmer and a
system
• The system guarantees that if the programmer follows the rules for

operations on data, data will be consistent
• Result of the reading, writing, updating data will be predictable

Two consistency models
• Data-centric consistency models – Defines consistency as experienced by all

the clients; provides a system wide consistent view on the data store
• Client-centric consistency models – Defines consistency of the data store only

from one client’s perspective; Different clients might see different sequences
of operations at their replicas

7

Distributed Data Store

Distributed Data Store – Physically distributed & replicated across
multiple machines
• Data can be read from or written by any process on any node
• A local copy helps with faster reads
• A write to a local replica needs to be propagated to all remote replicas

8

Terminology & Notations

Read and write operations
• Wi(x)a: Process Pi writes value a to x
• Ri(x)b: Process Pi reads value b from x
• All data items initially have value NIL

Possible behavior represented over time; time moves from left to right

9

Strict Consistency

With strict consistency, all writes are visible instantaneously to all processes
Any read to a shared data item returns the value stored by the most recent
write operation on that data item

Strictest consistency model – most rigid model
Practical relevance restricted to a thought experiment and formalism

• Relies on absolute global time
• Instantaneous message exchange is impossible

10

P1:
P2:

W(x)a
R(x)a

Strictly Consistent Data Store

P1:
P2:

W(x)a
R(x)aR(x)NIL

Not Strictly Consistent Data Store

Sequential Consistency

Sequential Consistency – The result of any execution is the same as if
the operations by all processes were executed in some sequential order
and the operations of each individual process appear in this sequence
in the order specified by its program
Any valid interleaving of read or write operations is fine, but all
processes must see the same interleaving
• The events observed by each process must globally occur in the same order,

or it is not sequentially consistent

11

Sequential Consistency Example

12

A sequentially consistent data store A data store that is not sequentially consistent

P3 and P4 see the same interleaving of writes P3 and P4 do not see the same interleaving of writes

Linearizability

In sequential consistency, absolute time is somewhat irrelevant – the
order of events is most important
Linearizability – Each operation should appear to take effect
instantaneously at some moment between its start and completion
A data store is said to be linearizable when each operation is
timestamped, and the following conditions hold:
• Sequential Consistency holds
• Timestamp(OP1(x)) < Timestamp(OP2(x)) then OP1(x) should precede OP2(x) in

this sequence

13

Linearizability Consistency Example

14

A linearizable consistent data storeIs this linearizable?

Sequential Consistency vs. Linearizability

Linearizability is weaker than strict consistency, but stronger than
sequential consistency
Linearizability cares about time; sequential consistency cares about
program order
• With Sequential consistency, the system has freedom of how to interleave

operations coming from different clients, as long as the ordering from each
client is preserved

• With Linearizability, the interleaving across all clients is pretty much
determined already based on the time

15

Causal Consistency

Writes that are potentially causally related must be seen by all
processes in the same order
Concurrent writes may be seen in a different order on different
machines
Example – If event B is a direct or indirect result of another prior event
A, then all processes should observe event A before observing event B

16

Causal Consistency Example

17

A violation of a causally-
consistent store

A correct sequence of events
in a causally-consistent store

Causal Consistency Example

18

Assume W2(x)b and W1(x)c are concurrent

Strictly consistent?
Sequentially consistent?
Causally consistent?

P1:

P2:

P3:

P4:

W(x)a

R(x)a

R(x)a

R(x)a

W(x)b

W(x)c

R(x)c

R(x)b

R(x)b

R(x)c

FIFO Consistency

Writes performed by a single process are seen by all other processes in
the order in which they were issued
Writes from different processes may be seen in a different order by
different processes
FIFO consistency is easy to implement

19

A valid sequence of events of FIFO consistency
(P2’s writes are seen in the correct order)

P1:

P2:

P3:

P4:

W(x)a

R(x)a

R(x)c

R(x)c

W(x)b W(x)c

R(x)b

R(x)a

R(x)a

R(x)b

Data-Centric Consistency – Strong & Weak
Models
Strong Consistency Models – Operations on shared data are synchronized; do not
require synchronization operations

• Strict Consistency – Absolute time ordering of all shared accesses matters
• Sequential Consistency – All processes see all shared accesses in the same order
• Linearizability – Sequential Consistency + Operations are ordered according to a global time
• Causal Consistency – All processes see causally-related shared accesses in the same order
• FIFO Consistency – All processes see writes from each other in the order they were used

Weak Consistency Models – Synchronization occurs only when shared data is
locked and unlocked; rely on synchronization operations

• Weak Consistency – Shared data can be counted on to be consistent only after a
synchronization is done

• Release Consistency – Shared data are made consistent when a critical region is exited
• Entry Consistency – Shared data pertaining to a critical region are made consistent when a

critical region is entered
Weaker the consistency models, the more scalable it is

20

Data Replication in Cloud

21

Client-Centric Consistency Models

Spectrum of Consistency

Lots of consistencies proposed in research community
Today, we will consider the six Guarantees discussed by Doug Terry

22

Baseball Game

One game comprises 9 innings
Game starts with 0-0 score
Visitors bat first and remain at bat until they make three outs
Then home team bats until they make three outs
Continue for 9 innings

23

Key-Value Store for Score

Score recorded in a Key-Value (KV) store in two objects
One object for visitor’s score, another for home team
When a team scores a run,
• Read operation is performed on its current score
• The returned value is incremented by 1
• The new value is written back to the KV store

24

Sample Game Score

Existing Score

25

1 2 3 4 5 6 7 8 9 RUNS

Visitors 0 0 1 0 1 0 0 2

Home 1 0 1 1 0 2 5

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Strong Consistency

Guarantee – See all previous writes
All readers read the same data
Possible values
 2, 5

26

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Eventual Consistency

Guarantee – See subset of previous writes
Readers can read data that is written in the past
Read can return from a replica that has received an
arbitrary subset of writes to the data object being read
Eventually see all writes
Possible values
 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2,

1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5

27

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Consistent Prefix

Guarantee – See initial sequence of writes
Reader is guaranteed to observe an ordered sequence
of writes starting with the first write to a data object
The reader sees a version of the data store that existed
at the primary at some time in the past
Possible values
 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5

28

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Bounded Staleness

Guarantee – See all ”old” writes
Reader ensured that read results are not too out-of-
date
Staleness factor
• Read operation will return any values written more than T

minutes ago or more recently written value

Possible values
 At most one inning out-of-date score like
 2-3, 2-4, 2-5

29

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Monotonic Reads

Guarantee – See increasing subset of writes
Reader guaranteed to observe a data store that is
increasingly up-to-date over time
If reader issues a read operation and then later issues
another read to the same object; the second read will
return the same value(s) or the results of later writes
Possible value
 After reading 1-3 – 1-3, 1-4, 1-5, 2-3, 2-4,

2-5

30

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Read My Writes

Guarantee – See all writes performed by the reader
After writing a new value and subsequently reading
the value will return the value that was last written or
some other value that was later written by a different
client
Possible value
 For the writer: 2-5
 For anyone else: 0-0, 0-1, 0-2, 0-3, 0-4, 0-5,

1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2,
2-3, 2-4, 2-5

31

Write(“home”, 1)
Write(“visitors”, 1)
Write(“home”, 2)
Write(“home”, 3)
Write(“visitors”, 2)
Write(“home”, 4)
Write(“home”, 5)

Write Order

Visitors Home

2 5

Summary

Different read guarantees
• Strong Consistency – See all previous writes
• Eventual Consistency – See subset of previous writes
• Consistent Prefix – See initial sequence of writes
• Bounded Staleness – See all “old” writes
• Monotonic Reads – See increasing subset of writes
• Read My Writes – See all writes performed by the reader

32

Consistency Trade-off

Trade-off between three properties – Consistency, Availability,
Performance
Some entries may vary based on implementation, deployment,
operating details, etc.

33

Consistency Performance Availability

Strong Consistency Excellent Poor Poor

Eventual Consistency Poor Excellent Excellent

Consistent Prefix Okay Good Excellent

Bounded Staleness Good Okay Poor

Monotonic Reads Okay Good Good

Read My Writes Okay Okay Okay

Qualitatively Accurate General Comparison

