
Distributed Systems
Fall 2025

Yuvraj Patel

Today’s Agenda

Exam Format
Exam Preparation
Revision
Kafka

2

Exam Format

3

Exam Preparation

4

Consensus with Paxos

Two phases – Prepare & Accept
Prepare Phase
• Find out any chosen values so far
• Block older and uncompleted proposals

Accept Phase
• Inform acceptors to accept a specific value

5

Algorithm – Prepare Phase

Proposer
• Choose proposal number n, send <prepare, n> to acceptors

Acceptor
• Only receiving a prepare message

• If n > nh, where nh is the highest proposal seen so far by the acceptor
 nh = n. (Promise to not accept older proposals)
 If no prior proposal accepted,
 reply <promise, n, NULL>
 Else
 reply <promise, n, (na, va)>
• Else
 Reply <prepare-failed>

6

Algorithm – Accept Phase

Proposer
• If receive promise from majority of the acceptors,
 Determine any earlier chosen value va for na and choose latest value or any
 value v selected by the proposer
 send <accept, n, v> to acceptors

Acceptors
• If n >= nh
 na = nh = n
 va = v
• reply <accept, nh>

Proposer
• When responses received from the majority
 If any nh > n
 Start from prepare phase again
 Else
 Value is chosen

7

Paxos flow

8

Raft Basics

9

A node can be either follower, candidate, or leader
Raft divides time into terms of arbitrary length; terms are numbered
consecutive integers
Each term begins with an election, where one or more candidates
attempts to become a leader

• Two possible outcomes of an election – leader elected or split vote
Term acts as a logical clock and helps detect obsolete information such
as stale leaders
Each node stores a current term number, increases monotonically
Current terms exchanged while normal communication

• One node’s current term smaller than others, it updates it term to larger
value

• If leader/candidate discovers its term is out of date; revert to follower role
If node receives a request with a stale term number, reject the request

High-Level Understanding

10

Log entries over time

11

A leader’s log is the ultimate truth
While election, ensure that the leader
has all committed entries
Leader keeps track of each follower's
log
Leader ensures all followers are up to
date
• Either remove uncommitted log

entries or append to log entries

Mutual Exclusion & Concurrency

Concurrency leads to non-deterministic behavior
• Different results even with same inputs

Race conditions: Specific type of bug
• Sometimes program works fine, sometimes it doesn’t; depends on timing

Want to execute instructions as an uninterruptable group
• Want them to be atomic; appears that all execute at once, or none execute

Uninterruptable group of code is called critical section
Mutual exclusion for critical sections
• If thread A is in critical section C, thread B isn’t
• It is fine if other threads do unrelated work

12

Distributed Locks

Cannot share local lock variables
Mutual exclusion in a distributed system
Central Solution
• Elect a central leader using election algorithm
• Leader keeps a queue of waiting requests from nodes who wish to access

Decentralized approach
• All nodes involved in the decision making of who should access the resource
• Ricart-Agrawala Algorithm – Use the notion of causality – rely on logical

timestamps
• Token Ring Algorithm -- All nodes arranged in a ring fashion; Use token as a

means of ownership

13

Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does
Deadlocks can only happen with these four conditions

1. Mutual Exclusion
2. Hold-and-wait
3. No preemption
4. Circular Wait

Can eliminate deadlock by eliminating any one
condition

14

ST
O
P

STOP

STO
P

STOP

AB

CD

Kafka

15

END OF LECTURES
Good luck with the exam

16

