Distributed Systems
Fall 2025

Yuvraj Patel

Today’s Agenda

Exam Format
Exam Preparation
Revision

Kafka

Exam Format

Exam Preparation

Consensus with Paxos

Two phases — Prepare & Accept

Prepare Phase
* Find out any chosen values so far
* Block older and uncompleted proposals

Accept Phase
* Inform acceptors to accept a specific value

Algorithm — Prepare Phase

Proposer
* Choose proposal number n, send <prepare, n> to acceptors

Acceptor

* Only receiving a prepare message
* If n>n;, where n,, is the highest proposal seen so far by the acceptor
n, = n. (Promise to not accept older proposals)
If no prior proposal accepted,
reply <promise, n, NULL>
Else
reply <promise, n, (n,, v,)>
* Else
Reply <prepare-failed>

Algorithm — Accept Phase

Proposer
* If receive promise from majority of the acceptors,
Determine any earlier chosen value v, for n, and choose latest value or any
value v selected by the proposer
send <accept, n, v> to acceptors

Acceptors
* Ifn>=ny
Na=Np=n
Va=V
* reply <accept, np>
Proposer
* When responses received from the majority
If any np>n
Start from prepare phase again
Else
Value is chosen

Paxos flow

Raft Basics

A node can be either follower, candidate, or leader fimes out

Raft divides time into terms of arbitrary length; terms are numbered statsup timesout, new election
consecutive integers starts election

receives votes from
majority of servers

Each term begins with an election, where one or more candidates
attempts to become a leader

* Two possible outcomes of an election — leader elected or split vote discovers current

Follower Candidate Leader

discovers server
Term acts as a logical clock and helps detect obsolete information such 'eaderornewterm with higher term

as stale leaders

Each node stores a current term number, increases monotonically term 1 term 2 13 term4
Current terms exchanged while normal communication . I . .
* One node’s current term smaller than others, it updates it term to larger L S 4 >
value \ \ / terms

* If leader/candidate discovers its term is out of date; revert to follower role €lection ”O”T;f”" no ?mgrging
) .) operation eader
If node receives a request with a stale term number, reject the request

High-Level Understanding

Log entries over time

A leader’s log is the ultimate truth 1 2 3 4 5 6 7 8 log index
While election, ensure that the leader [1 [11 f2 3 f33]/3 eader
has all committed entries XSy 2lyBx2x Ay 7ixeoxd
: 1 1 1 2 3 \
Leader keeps track of each follower's [xe3|y<1]y<9|x<2|x<0
log 11123333
X3 lyellye9|xe2|x<0|y«T7|x<5|x<4
Leader ensures all followers are up to — } followers
. Eithgr remove uncommitted !og BEEEEEEERERE
entries or append to log entries xe3|y<llye9|xe2[x0|y«7[xe5)

committed entries

Mutual Exclusion & Concurrency

Concurrency leads to non-deterministic behavior
 Different results even with same inputs

Race conditions: Specific type of bug
e Sometimes program works fine, sometimes it doesn’t; depends on timing

Want to execute instructions as an uninterruptable group
* Want them to be atomic; appears that all execute at once, or none execute

Uninterruptable group of code is called critical section

Mutual exclusion for critical sections

* |If thread A is in critical section C, thread B isn’t
e Itis fine if other threads do unrelated work

Distributed Locks

Cannot share local lock variables
Mutual exclusion in a distributed system

Central Solution
* Elect a central leader using election algorithm
* Leader keeps a queue of waiting requests from nodes who wish to access

Decentralized approach
* All nodes involved in the decision making of who should access the resource
* Ricart-Agrawala Algorithm — Use the notion of causality — rely on logical
timestamps
* Token Ring Algorithm -- All nodes arranged in a ring fashion; Use token as a
means of ownership

Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does

Deadlocks can only happen with these four conditions
1. Mutual Exclusion
2. Hold-and-wait @ @
3. No preemption A

4. Circular Wait
Can eliminate deadlock by eliminating any one

D 1o
O O

condition

14

Kafka

END OF LECTURES
Good luck with the exam

