THE UNIVERSITY
of EDINBURGH

Distributed Systems
Fall 2024

Yuvraj Patel

Disclaimer: Slides prepared using multiple sources (UW-Madison — Remzi, Andrea, Mike; Cambridge
— Martin Kleepman; Distributed Systems book by MVS/ AST; University of Edinburgh — Yuvraj Patel)



Today’s Agenda

Time & Clocks
* Physical, Logical, Vector

Distributed Snapshots



Need for Clocks & Time

Distributed systems need to rely on time for
* Scheduling, Timeouts, failure detectors, etc.
* Performance measurements, statistics, profiling
* Log files & databases (ensure ordering)
* Caching



Physical Clock & Clock Drift

Clocks show time = count number of seconds elapsed

Clocks relies on quartz oscillators and count cycles to measure time
Clock may run little bit fast or slow

Multiple factors such as quality, environmental variables(temperature)

Drift measured in parts per million
* 1 ppm = maximum deviation of 1 ticks per million ticks

Atomic clocks more accurate than mechanical clocks
* 1in 10'* (1 second in 3 million years)
* Costly



Coordinated Universal Time (UTC)

Coordinated universal time (UTC) = International standard
e UTC s the correct time at any given point in time

Everyone uses it as reference to calculate local time

As per atomic time, 1 year =365 * 24 * 60 * 60 * 9192631770 periods
of caesium-133’s resonant frequency

1 year of earth rotation varies due to multiple reasons

UTC Coordinated with atomic time
* Add leap seconds to be consistent with astronomical time



Common representations of timestamp

Two common representations
e Unix Time
* |ISO 8601

Unix Time = Number of seconds since 1 January 1970

ISO 8601 = International standard

* Represented as YYYY-MM-DD Hour-Minutes-Seconds-Microseconds +
Timezone offset relative to UTC

Both representations miss the leap seconds

Software needs to take care of that

* Bug in Linux Kernel caused livelock on leap seconds leading to many internet
services being down (30/12/2012)



Clock Synchronization

Computers can track physical time with a quartz clock
Clock error increases due to clock drift
Clock Skew — Difference between two clocks at a point in time

Analogy
* Clock drift — Difference in speed of two vehicles on the road
e Clock skew — Distance between two vehicles on the road

e Clock drift causes skew to increase

* |f faster vehicle is ahead, it will drift away
* |f faster vehicle is behind, it will catch up and eventually drift away

Clock Synchronization is necessary



Clock Synchronization (contd...)

Two approaches — External vs. Internal

External Synchronization

* Each process C(i)’s clock is within a bound D of a well-known clock S external
to the group

* |C(i)) =S| < D always
* S may be connected to UTC or atomic clock
* Example: Cristian’s algorithm, NTP

Internal Synchronization
* Every pair of processes in a group have clocks within bound D
* |C(i) — C(j)| < D always and for all the processes |, j
e Example: Berkeley algorithm



Network Time Protocol

NTP commonly used for clock synchronization
Hierarchy of clock serves arranged in strata Q) C) Q)

Stratum 0 = Atomic clocks

Stratum 1 = Primary time servers; Sync with =
stratum 0; May sync with each other VAW BN

Stratum n + 1 = Sync with stratum n and each
other f

Source:Wikipedia



Network Time Protocol (contd...)




Yet....

We still have
* A non-zero error
e Cannot get rid of the error

Can we avoid synchronization clocks altogether?
* How do we order events then?



Ordering of Events

Clock synchronization is one approach to order events

|s there another way where we avoid absolute time?
* Absolute time may not be accurate
* Absolute time may be less important

Can logical clocks work where we do not need synchronization?
For ordering, we need causality to be determined

Event A happens causally before another event B, then
e timestamp(A) < timestamp(B)



Ordering of Events (contd...)




Ordering of Events

Clock synchronization is one approach to order events

|s there another way where we avoid absolute time?
* Absolute time may not be accurate
* Absolute time may be less important

Can logical clocks work where we do not need synchronization?
For ordering, we need causality to be determined

Event A happens causally before another event B, then
e timestamp(A) < timestamp(B)



Happens-Before Relation

An event is something happening at one node
* Executing an instruction
* Sending a message
* Receiving a message

Event A happens before Event B (written as A—> B) iff:

* A and B occurred on the same node, and A occurred before B in that node’s local
execution order

* Event A is the sending of some message M, and event B is the receipt of that same
message M

» There exists an event C such that A>C and C=>B
Happens-before relation is a partial order

* A>B or B2>A is not possible

* In that case, A and B are concurrent (written A | | B)



Happens-Before Relation Example




Causality

Relativity in Physics
* Information is not possible to travel faster than speed of light

When a—=2b, then a might have caused b

When a | | b, we know that a cannot have caused b
Happens-before relation encodes potential causality
Let < (precede) be a strict total order on events

If (a—=> b) =»(a < b) then < is a causal order



Logical Clocks

Key idea
* Physical clocks inconsistent with causality
* If two machines do not interact, no need for synchronization

* Processes need to agree on the ordering of events instead of the time at
which they occurred

Logical clocks
* (a 2 b) = Timestamp(a) < Timestamp(b)



Lamport Clocks

Assign logical timestamp to each event
Timestamp obeys causality
Rules/Algorithm

e Each process maintains a counter value
* On init, counter value is 0

* Each process increments its counter when a send or an instruction is executed.
* A send message event carries the counter (timestamp)

* For a receive message event, the recipient process will update its local counter
max(local counter, message counter (timestamp)) + 1
Properties
* If a 2 b then value-of-counter(a) < value-of-counter(b)
* However, if value-of-counter(a) < value-of-counter(b), does not imply a=2>b
* Possible value-of-counter(a) - value-of-counter(b) fora # b



Lamport Clock Example




Concurrent Events

A pair of concurrent events doesn’t have a causal path from one event
to another

Lamport clock not guaranteed to be ordered or unequal for concurrent
events

Concurrent events are not causality related
* value-of-counter(a) < value-of-counter(b)
* Maybe a=>bora||b

Can we have logical timestamps from which we can tell if two events
are concurrent or causally related?



Vector Clocks

Assume n nodes in the system, N = <N1, N2... Nn>

Vector timestamp of an event a is V(a) = <t1, t2...tn>
* tiis the number of events observed on node Ni

Each node has a current vector timestamp T
On event at node Ni, increment vector element TJ[i]
Attach current vector timestamp to each send message

Recipient merges message vector into its local vector



Vector Clocks (contd...)

Rules/Algorithm

* On initialization at node Ni,
* doT=<0,0,..0>
* On any event occurring at node Ni,
e doT[i]=TI[i]+1
* On Send event while sending message M at node Ni,
* doT[i]=TIi] +1;
* Send (T, M)
* On Receiving event message M at node Nj, do
* TOI=ThHI+1
* T[k] = max(T[k], T’[k]), for every k # jand k € {1,...n}



Vector Clocks Example




Causality-Relation@Vector Clocks

VTa = VTb, iff VTal[i] = VTb[i], foralli=1, ..., N
VTa < VTb, iff VTal[i] £ VTb|[i], foralli=1, ..., N

Two events are causally related, iff

* VTa< VTh, i.e.
* VTa < VTb AND there exists j such that 1 <j < N AND VTalj] < VTb]j]

Two events VTa and VTb are concurrent, iff
* NOT (VTa £ VTb) AND NOT (VTb < VTa)



Detecting Global Properties

Sometimes it is necessary to have a global view of the system
* Checkpointing to support restarting the system post failure
* Garbage collection of objects
* Deadlock detection
e Termination of computation
* Debugging in general



Global Snapshot

Global Snapshot = Global State

Global state comprises
* Individual state of each process in the system
* Individual state of each communication channel in the system

Capture instantaneous state of each process and the communication
channels



Obvious Choice

Synchronize clocks of all processes

Ask all processes to record their states
at known time t

Issues
* Time synchronization is error prone
e Cannot record the state of the messages
in the communication channels
Do we need synchronization or
causality is enough?



Global Snapshot — What is needed?

Need to tell each process what to record and when
Need to record contents of communication channels properly

Cannot pause the entire system or interference with the normal
functioning

Collect the global state in a distributed manner
Possibly check for other useful properties on the global state



Consistent Cut

A cut is a set of cut events, one per node, each of which captures the
state of the node on which it occurs

A cut C={c], c2, ... cn}is consistent if for all the nodes there are not
events ei and ej such that

* (ei = ej) AND (ej = cj) AND (ei -/-> ci)
Simply, cut Cis consistent cut, iff

 for (each pair of events e, f in the system)
e eventeisinthe cutC, and if f --> e, then event fis also in the cut C

The cut events in a consistent cut are not causally related
* The cut is a set of concurrent events, and a set of concurrent events is a cut



Consistent States

A global state S is consistent iff it corresponds to a consistent cut



Chandy-Lamport Snapshot Algorithm Model

System Modelling
 Collection of processes each having a local state

 Collection of communication channels, either empty or have messages in-
flight, between each pair of processes

Communication channels are unidirectional and FIFO-ordered

No failure, all messages arrive intact, exactly once

Snapshot does not interfere with normal execution

Each process can record its own state and the state of the incoming channels
Only one snapshot initiator



Chandy-Lamport Snapshot Algorithm

Initiator Pi records it own state
Initiator process creates special messages called “Marker” messages

Forj=1to N except i
* Pisends out a Marker message on outgoing channel Cij

* Starts recording the incoming messages on each of the incoming channels at
Pi: Cji (for j =1 to N except i)



Chandy-Lamport Snapshot Algorithm

Whenever a process Pi receives a Marker message on an incoming
channel Cki

* If (this is the first Marker Pi is seeing)
* Pirecords its own state first
* Marks the state of the channel Cki as “empty”
e forj=1to N except|
* Pisends out a Marker message on outgoing channel Cij
* Starts recording the incoming messages on each of the incoming channels at Pi: Cji (for j
=1to N except i and k)
* Else (Marker already seen)

* Mark the state of the channel Cki as all the messages that have arrived on it since
recording was turned on for Cki



Chandy-Lamport Snapshot Algorithm

Algorithm terminates when
* All the processes have received a Marker to record their own state
 All the process have received a Marker on all the (N — 1) incoming channels to
record the state of all the channels

A central authority(server/entity) may collect all the local state of the
processes and the communication channels to obtain the full global
snapshot

Any run of the algorithm creates a consistent cut



Chandy-Lamport Snapshot Algorithm Example




Chandy-Lamport Snapshot Algorithm Proof

Let ei and ej be events occurring at Pi and Pj, such that ei—2>ej
The snapshot algorithm ensures that if ] is in the cut then ei is also in the

cut

Implies

If ej = <Pj records its state> then ei = <Pi records its state>

Proof by contradiction

Suppose ej 2> <Pj records its state> and <Pi records its state> =2 ei
Path of messages goes from ei 2 ej

Due to FIFO ordering, markers on each link in above path will precede regular
message

Thus, since <Pi records its state> = ei, it must be true that Pj received a marker
before €]

Implies, e] is not in the cut =» Contradiction



Uses of Chandy-Lamport Algorithm

Correctness in a system can be seen two ways — Liveness and Safety

Liveness — guarantee that something good will happen eventually
* Not time bound, if in long run, things will work out fine
e Example: Criminal will be jailed sooner or later; Computation will complete;
Consensus will arrive
Safety — guarantee that something bad will never happen
* Example: Innocent will never be jailed; Deadlock never happens; Consensus
on different values for the same proposal

Difficult to guarantee both in asynchronous system



In The Language of Global States

A system moves from one global state to another, via causal steps

Liveness w.r.t a property Prin a given state S means

S satisfies Pr, or there is some causal path of global states from S to S’ where
S’ satisfies Pr

Safety w.r.t a property Pr in a given state S means
S satisfies Pr, and all global states S’ reachable from S also satisfy Pr



Using Global Snapshot Algorithm

Chandy-Lamport algorithm can be used to detect global properties that
are stable (stable means once true, always true)

Stable Liveness — Computation has terminated

Stable Non-Safety — There is a deadlock, an object is not referenced
anymore

All stable global properties can be detected using the algorithm due to
its causal correctness



