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Today’s Agenda

Time & Clocks
• Physical, Logical, Vector

Distributed Snapshots
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Need for Clocks & Time

Distributed systems need to rely on time for
• Scheduling, Timeouts, failure detectors, etc.
• Performance measurements, statistics, profiling
• Log files & databases (ensure ordering)
• Caching
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Physical Clock & Clock Drift

Clocks show time à count number of seconds elapsed
Clocks relies on quartz oscillators and count cycles to measure time
Clock may run little bit fast or slow
Multiple factors such as quality, environmental variables(temperature)
Drift measured in parts per million
• 1 ppm à maximum deviation of 1 ticks per million ticks

Atomic clocks more accurate than mechanical clocks
• 1 in 10-14  (1 second in 3 million years)
• Costly
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Coordinated Universal Time (UTC)

Coordinated universal time (UTC) à International standard
• UTC is the correct time at any given point in time

Everyone uses it as reference to calculate local time
As per atomic time, 1 year = 365 * 24 * 60 * 60 * 9192631770 periods 
of caesium-133’s resonant frequency
1 year of earth rotation varies due to multiple reasons
UTC Coordinated with atomic time
• Add leap seconds to be consistent with astronomical time
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Common representations of timestamp

Two common representations
• Unix Time
• ISO 8601

Unix Time à Number of seconds since 1 January 1970 
ISO 8601 à International standard 
• Represented as YYYY-MM-DD Hour-Minutes-Seconds-Microseconds + 

Timezone offset relative to UTC
Both representations miss the leap seconds
Software needs to take care of that
• Bug in Linux Kernel caused livelock on leap seconds leading to many internet 

services being down (30/12/2012) 
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Clock Synchronization

Computers can track physical time with a quartz clock
Clock error increases due to clock drift
Clock Skew – Difference between two clocks at a point in time
Analogy
• Clock drift – Difference in speed of two vehicles on the road
• Clock skew – Distance between two vehicles on the road
• Clock drift causes skew to increase

• If faster vehicle is ahead, it will drift away
• If faster vehicle is behind, it will catch up and eventually drift away

Clock Synchronization is necessary 
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Clock Synchronization (contd…)

Two approaches – External vs. Internal
External Synchronization
• Each process C(i)’s clock is within a bound D of a well-known clock S external 

to the group
• |C(i) – S| < D always
• S may be connected to UTC or atomic clock
• Example: Cristian’s algorithm, NTP

Internal Synchronization
• Every pair of processes in a group have clocks within bound D
• |C(i) – C(j)| < D always and for all the processes I, j
• Example: Berkeley algorithm
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Network Time Protocol

NTP commonly used for clock synchronization
Hierarchy of clock serves arranged in strata
Stratum 0 à Atomic clocks
Stratum 1 à Primary time servers; Sync with 
stratum 0; May sync with each other
Stratum n + 1 à Sync with stratum n and each 
other
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Network Time Protocol (contd…)
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Yet….

We still have
• A non-zero error
• Cannot get rid of the error

Can we avoid synchronization clocks altogether? 
• How do we order events then?
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Ordering of Events

Clock synchronization is one approach to order events
Is there another way where we avoid absolute time?
• Absolute time may not be accurate
• Absolute time may be less important

Can logical clocks work where we do not need synchronization?
For ordering, we need causality to be determined
Event A happens causally before another event B, then 
• timestamp(A) < timestamp(B)

12



Ordering of Events (contd…)
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Ordering of Events

Clock synchronization is one approach to order events
Is there another way where we avoid absolute time?
• Absolute time may not be accurate
• Absolute time may be less important

Can logical clocks work where we do not need synchronization?
For ordering, we need causality to be determined
Event A happens causally before another event B, then 
• timestamp(A) < timestamp(B)
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Happens-Before Relation

An event is something happening at one node
• Executing an instruction
• Sending a message
• Receiving a message

Event A happens before Event B (written as AàB) iff:
• A and B occurred on the same node, and A occurred before B in that node’s local 

execution order
• Event A is the sending of some message M, and event B is the receipt of that same 

message M
• There exists an event C such that AàC and CàB

Happens-before relation is a partial order
• AàB or BàA is not possible
• In that case, A and B are concurrent (written A || B)
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Happens-Before Relation Example
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Causality

Relativity in Physics
• Information is not possible to travel faster than speed of light

When aàb, then a might have caused b
When a ||b, we know that a cannot have caused b
Happens-before relation encodes potential causality
Let ≺ (precede) be a strict total order on events
If (aà b) è(a ≺ b) then ≺ is a causal order
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Logical Clocks

Key idea
• Physical clocks inconsistent with causality
• If two machines do not interact, no need for synchronization
• Processes need to agree on the ordering of events instead of the time at 

which they occurred

Logical clocks
• (a à b) è Timestamp(a) < Timestamp(b)
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Lamport Clocks

Assign logical timestamp to each event
Timestamp obeys causality
Rules/Algorithm

• Each process maintains a counter value
• On init, counter value is 0
• Each process increments its counter when a send or an instruction is executed. 
• A send message event carries the counter (timestamp)
• For a receive message event, the recipient process will update its local counter 

max(local counter, message counter (timestamp)) + 1
Properties

• If a à b then value-of-counter(a) < value-of-counter(b)
• However, if value-of-counter(a) < value-of-counter(b), does not imply aàb
• Possible value-of-counter(a) - value-of-counter(b) for a ≠ b
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Lamport Clock Example
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Concurrent Events

A pair of concurrent events doesn’t have a causal path from one event 
to another
Lamport clock not guaranteed to be ordered or unequal for concurrent 
events
Concurrent events are not causality related
• value-of-counter(a) < value-of-counter(b)
• Maybe aàb or a || b

Can we have logical timestamps from which we can tell if two events 
are concurrent or causally related?
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Vector Clocks

Assume n nodes in the system, N = <N1, N2… Nn>
Vector timestamp of an event a is V(a) = <t1, t2…tn>
• ti is the number of events observed on node Ni

Each node has a current vector timestamp T
On event at node Ni, increment vector element T[i]
Attach current vector timestamp to each send message
Recipient merges message vector into its local vector
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Vector Clocks (contd…)

Rules/Algorithm
• On initialization at node Ni,

• do T = <0, 0, …0>
• On any event occurring at node Ni, 

• do T[i] = T[i] + 1
• On Send event while sending message M at node Ni, 

• do T[i] = T[i] + 1; 
• Send (T, M) 

• On Receiving event message M at node Nj, do
• T[j] = T[j] + 1
• T[k] = max(T[k], T’[k]), for every k ≠ j and k ∈ {1,…n}
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Vector Clocks Example
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Causality-Relation@Vector Clocks

VTa = VTb, iff VTa[i] = VTb[i], for all i = 1, …, N
VTa ≤ VTb, iff VTa[i] ≤ VTb[i], for all i = 1, …, N
Two events are causally related, iff
• VTa < VTb, i.e.
• VTa ≤ VTb AND there exists j such that 1 ≤ j ≤ N AND VTa[j] < VTb[j]

Two events VTa and VTb are concurrent, iff
• NOT (VTa ≤ VTb) AND NOT (VTb ≤ VTa)
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Detecting Global Properties

Sometimes it is necessary to have a global view of the system
• Checkpointing to support restarting the system post failure
• Garbage collection of objects
• Deadlock detection
• Termination of computation
• Debugging in general
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Global Snapshot

Global Snapshot = Global State 
Global state comprises 
• Individual state of each process in the system
• Individual state of each communication channel in the system

Capture instantaneous state of each process and the communication 
channels
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Obvious Choice

Synchronize clocks of all processes
Ask all processes to record their states 
at known time t
Issues
• Time synchronization is error prone
• Cannot record the state of the messages 

in the communication channels

Do we need synchronization or 
causality is enough?
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Global Snapshot – What is needed?

Need to tell each process what to record and when
Need to record contents of communication channels properly
Cannot pause the entire system or interference with the normal 
functioning
Collect the global state in a distributed manner
Possibly check for other useful properties on the global state
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Consistent Cut

A cut is a set of cut events, one per node, each of which captures the 
state of the node on which it occurs
A cut C = {c1, c2, … cn} is consistent if for all the nodes there are not 
events ei and ej such that
• (ei à ej) AND (ej à cj) AND (ei -/-> ci)

Simply, cut C is consistent cut, iff
• for (each pair of events e, f in the system)
• event e is in the cut C, and if f --> e, then event f is also in the cut C

The cut events in a consistent cut are not causally related
• The cut is a set of concurrent events, and a set of concurrent events is a cut
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Consistent States

A global state S is consistent iff it corresponds to a consistent cut
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Chandy-Lamport Snapshot Algorithm Model

System Modelling
• Collection of processes each having a local state
• Collection of communication channels, either empty or have messages in-

flight, between each pair of processes
• Communication channels are unidirectional and FIFO-ordered
• No failure, all messages arrive intact, exactly once
• Snapshot does not interfere with normal execution
• Each process can record its own state and the state of the incoming channels
• Only one snapshot initiator
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Chandy-Lamport Snapshot Algorithm

Initiator Pi records it own state
Initiator process creates special messages called “Marker” messages
For j = 1 to N except i
• Pi sends out a Marker message on outgoing channel Cij
• Starts recording the incoming messages on each of the incoming channels at 

Pi: Cji (for j = 1 to N except i)
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Chandy-Lamport Snapshot Algorithm

Whenever a process Pi receives a Marker message on an incoming 
channel Cki
• If (this is the first Marker Pi is seeing)

• Pi records its own state first
• Marks the state of the channel Cki as “empty”
• for j = 1 to N except I

• Pi sends out a Marker message on outgoing channel Cij
• Starts recording the incoming messages on each of the incoming channels at Pi: Cji (for j 

= 1 to N except i and k)
• Else (Marker already seen)

• Mark the state of the channel Cki as all the messages that have arrived on it since 
recording was turned on for Cki
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Chandy-Lamport Snapshot Algorithm

Algorithm terminates when
• All the processes have received a Marker to record their own state
• All the process have received a Marker on all the (N – 1) incoming channels to 

record the state of all the channels

A central authority(server/entity) may collect all the local state of the 
processes and the communication channels to obtain the full global 
snapshot
Any run of the algorithm creates a consistent cut
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Chandy-Lamport Snapshot Algorithm Example
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Chandy-Lamport Snapshot Algorithm Proof

Let ei and ej be events occurring at Pi and Pj, such that eiàej
The snapshot algorithm ensures that if ej is in the cut then ei is also in the 
cut
Implies

• If ej à <Pj records its state> then ei à <Pi records its state>
Proof by contradiction

• Suppose ej à <Pj records its state> and <Pi records its state> à ei
• Path of messages goes from ei à ej
• Due to FIFO ordering, markers on each link in above path will precede regular 

message
• Thus, since <Pi records its state> à ei, it must be true that Pj received a marker 

before ej
• Implies, ej is not in the cut è Contradiction
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Uses of Chandy-Lamport Algorithm

Correctness in a system can be seen two ways – Liveness and Safety
Liveness – guarantee that something good will happen eventually
• Not time bound, if in long run, things will work out fine
• Example: Criminal will be jailed sooner or later; Computation will complete; 

Consensus will arrive

Safety – guarantee that something bad will never happen
• Example: Innocent will never be jailed; Deadlock never happens; Consensus 

on different values for the same proposal

Difficult to guarantee both in asynchronous system
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In The Language of Global States

A system moves from one global state to another, via causal steps
Liveness w.r.t a property Pr in a given state S means
• S satisfies Pr, or there is some causal path of global states from S to S’ where 

S’ satisfies Pr

Safety w.r.t a property Pr in a given state S means
• S satisfies Pr, and all global states S’ reachable from S also satisfy Pr
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Using Global Snapshot Algorithm

Chandy-Lamport algorithm can be used to detect global properties that 
are stable (stable means once true, always true)
Stable Liveness – Computation has terminated
Stable Non-Safety – There is a deadlock, an object is not referenced 
anymore
All stable global properties can be detected using the algorithm due to 
its causal correctness
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