THE UNIVERSITY
of EDINBURGH

Distributed Systems
Fall 2024

Yuvraj Patel

Disclaimer: Slides prepared using multiple sources (UW-Madison — Remzi, Andrea, Mike; Cambridge
— Martin Kleepman; Distributed Systems book by MVS/ AST; University of Edinburgh — Yuvraj Patel)



Today’s Agenda

Consensus
e Basics

Leader Election



Why Consensus?

Multiple use-cases
* Replication — make sure the replicated data is same on all the nodes
* Failure Detection — a machine/leader has failed/stopped responding
* Leader Election — elect a leader to initiate a snapshot, etc.
* and many more...

All the above scenarios involve

Multiple parties

Presence of faults

Coordinate amongst themselves

Need to agree to something or arrive at a decision

Consensus Problem — Single value formulation



Consensus Protocol

Consider a distributed system with n nodes
* Each node i has an input x;
* Faults may happen at arbitrary times

Output
* All nodes agree on a single value; Value cannot change later

Guarantee the following
* Termination (Liveness): Every non-faulty node eventually decides
» Agreement (Safety): All non-faulty nodes decide on the same value
* Validity: The decided value must be the input of at least one node



Consensus Protocol (contd...)

Not democratic; Value proposed by a small minority can be decided
Consensus possible depending on multiple parameters

Most important parameters
» System Model — Synchronous or Asynchronous
e Fault types — Crash or Byzantine



Synchronous vs. Asynchronous Systems

Synchronous systems
* Process execution speeds and message delivery times are bounded

e Can detect omission and timing failures

Asynchronous systems
* No assumptions about process execution speed or message delivery times

e Cannot reliably detect crash failures

Consensus
e Challenging in Asynchronous systems

 Solvable in Synchronous systems
* Algorithm for Asynchronous systems will work for Synchronous systems



Impossibility in Asynchronous Systems

Fischer, Nancy & Paterson show it is impossible to achieve consensus in
asynchronous system with a single faulty process

They prove that no asynchronous algorithm for agreeing on a one-bit
value can guarantee that it will terminate in the presence of crash

faults
* With no crash too, algorithm may not terminate

* Proof constructs infinite non-terminating runs

One of the most fundamental results in distributed systems.

* Interested students can check the FLP paper --
https://dl.acm.org/doi/pdf/10.1145/3149.214121



https://dl.acm.org/doi/pdf/10.1145/3149.214121

Leader Election Problem

Need to elect leader to perform tasks and broadcast leader details

If leader fails
* Someone will detect leader failed
* Initiate a leader election to elect another leader
* Only one leader elected, and everyone agrees on who is the leader



System Model & Assumptions

System Model
* N nodes in the system; each node having unique id
 Communicate via messages; messages will eventually be delivered
* Failures/crashes may happen at arbitrary time

Assumptions
* Any node can call for an election
* Any node can call for at most one election at a time

* Multiple processes can call for an election simultaneously; still lead to a single
leader

* Result independent of who calls for an election



Bully Algorithm

Key Idea: Node with highest ID wins

Consider N nodes {Ny, N;, N, N_}.
Whenever a node N, notices that the leader is unresponsive, election

initiated
* N,sends an ELECTION message to all the processes with higher IDs: N, 4,... N,

* If no one responds, N, wins
* If one of the higher-up’s answers, it takes over and N, ‘s job is done



Example
©,
O
get
6\ | ec
O)
&



Ring Algorithm

Nodes are organized into a ring. Process with highest id is elected as
coordinator

Whenever a node N, notices that the leader is unresponsive, election

initiated
* Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passed on the next successor
* If a message is passed on, the sender adds itself to the list.
* When the message gets back to the initiator, everyone had a chance to make
its presence known.

* The initiator sends a coordinator message around the ring containing a list of
all the living nodes. The one with the highest id is elected as coordinator



Example

6,0,1] [6,0,1,2]

[3,4,5,6,0,1] [3,4,5,6,0,1,2]

[6,0] [3,4,5,6,0]

[6,0,1,2,3]

[6,0,1,2,3,4,5]

[6,0,1,2,3,4]

The solid line shows the
election messages initiated
by Ng

The dashed one is election
messages initiated by P;

Both have the same list so it

is safe to have two nodes
initiating an election

13



