
Distributed Systems
Fall 2024

Yuvraj Patel

Today’s Agenda

Mutual Exclusion
Deadlocks
Transactions

2

Why Mutual Exclusion?

Balance = Balance + 1 equivalent in assembly

Want 3 instructions to execute as an uninterruptable group
• Want them to be atomic; appears that all execute at once, or none execute

Uninterruptable group of code is called critical section
More general: Need mutual exclusion for critical sections
• If thread A is in critical section C, thread B isn’t
• It is fine if other threads do unrelated work

3

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

Distributed Locking

Cannot share local lock variables
How do we support mutual exclusion in a distributed system?
Let us start simple with a central solution

4

Distributed Lock – Central Solution

System Model
• Each pair of nodes is connected by reliable channels
• Messages are eventually delivered to recipient, and in FIFO order
• Nodes do not fail

Central Solution
• Elect a central leader using election algorithm
• Leader keeps a queue of waiting requests from nodes who wish to access CS

5

Distributed Lock – Central Solution (contd…)

6

Step 1 Step 2 Step 3

Node P1 asks the coordinator
for permission to access a
shared resource. Permission is
granted.

Node P2 then asks permission
to access the same resource.
The Coordinator does not reply.

When P1 releases the resource,
it tells the coordinator, which
then replies to P2.

Distributed Lock – Central Solution (contd…)

7

Step 1 Step 2 Step 3

Node P1 asks the coordinator
for permission to access a
shared resource. Permission is
granted.

Node P2 then asks permission
to access the same resource.
The Coordinator does not reply.

When P1 releases the resource,
it tells the coordinator, which
then replies to P2.

Problems????

Distributed Solution

Decentralized approach
• All nodes involved in the decision making of who should access the resource

Ricart-Agarwala Algorithm
Use the notion of causality – rely on logical timestamps

8

Ricart-Agrawala Algorithm

9

Requestor

1. Broadcast a message to all receiver (including itself)
<Resource-Name, Node-Name, Logical Timestamp>

3. Wait for all the OK messages.
4. Access resources once all receivers send OK message.
5. Release the resource; Send OK message to all queue entries

Receiver

2. If receiver not accessing the resource or does not
 want to access it, send OK message to the sender.
 If the receiver already has access to the resource. Do
 not reply. Queue the request.
 If receiver wants to access the resource but has not
 yet done, compare the timestamp
 If incoming message has lower timestamp:
 send OK message to the sender
 Else:
 Queue the incoming request and
 send nothing

Ricart-Agrawala Algorithm Example

10

Step 1 Step 2 Step 3

Step 1: Two nodes want to access a shared resource at the same moment.
Step 2: P0 has the lowest timestamp, so it wins.
Step 3: When process P0 is done, it sends an OK message to P2. P2 can access the resource thereafter.

Ricart-Agrawala Algorithm Example

11

Step 1 Step 2 Step 3

Step 1: Two nodes want to access a shared resource at the same moment.
Step 2: P0 has the lowest timestamp, so it wins.
Step 3: When process P0 is done, it sends an OK message to P2. P2 can access the resource thereafter.

Problems????

Token Ring Algorithm

All nodes arranged in a ring fashion
Use token as a means of ownership
• Whosoever has the token can access the

resource
• If no access needed, pass it on to the

neighbor
• Token gets passed to all the nodes

12Problems????

Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does
Deadlocks can only happen with these four conditions

1. Mutual Exclusion
2. Hold-and-wait
3. No preemption
4. Circular Wait

Leads to safety property violation

13

ST
O
P

STOP

STO
P

STOP

AB

CD

Deadlock Example – Real World Case

14

ST
O
P

STOP
STO

P

STOP
A

B

Conditions necessary for a deadlock:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

Both cars arrive at same time
Is this deadlocked?

Deadlock Example – Real World Case (contd..)

15

ST
O
P

STOP
STO

P

STOP
A

B

C

D

Conditions necessary for a deadlock:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

4 cars arrive at same time
Is this deadlocked?

Deadlock Example – Real World Case (contd..)

16

Conditions necessary for a deadlock:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

4 cars arrive at same time
Is this deadlocked?

ST
O
P

STOP
STO

P

STOP
AB

CD

Deadlocks Handling

Two main strategies
• Prevention – Eliminate any one condition
• Detect and Handle

17

ST
O
P

STOP

STO
P

STOP
AB

CD

Eliminate Hold-And-Wait Condition

Problem: Nodes hold resources while waiting for additional resources
Deadlock Prevention Strategy
• Acquire all the locks atomically
• Can release locks over time, but cannot acquire again until all locks have been

released

How?
• Use a meta lock

18

Eliminate Hold-And-Wait Condition (contd…)

19

lock(&meta);
lock(&L1);
lock(&L2);
lock(&L3);
…
unlock(&meta);
// CS1
unlock(&L1);
// CS 2
Unlock(&L2);

lock(&meta);
lock(&L2);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

// CS2
Unlock(&L2);

lock(&meta);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

Eliminate Hold-And-Wait Condition (contd…)

Disadvantages
• Must know ahead of time

which locks will be needed
• Must be conservative (acquire

any lock possibly needed)
• Degenerates to just having one

big lock (reduces concurrency)

20

lock(&meta);
lock(&L1);
lock(&L2);
lock(&L3);
…
unlock(&meta);
// CS1
unlock(&L1);
// CS 2
Unlock(&L2);

lock(&meta);
lock(&L2);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

// CS2
Unlock(&L2);

lock(&meta);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

Eliminate No Preemption Condition

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
 lock(A);
 if (trylock (B) == -1) {
 unlock(A);
 goto top;
 }

21

Eliminate No Preemption Condition (contd…)

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
 lock(A);
 if (trylock (B) == -1) {
 unlock(A);
 goto top;
 }

22

Livelock:
No processes make progress, but state of
involved processes constantly changes
Classic solution: Exponential random
back-off

Eliminate No Preemption Condition

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
 lock(A);
 if (trylock (B) == -1) {
 unlock(A);
 goto top;
 }

23

Other strategy: Use timeouts instead of
trylock. If lock not acquired within a
timeout, release locks
Problem: How long should be the
timeout?

Detect Circular Wait Dependency

Another strategy is to detect deadlocks
Find cycles in the wait graphs
• Take snapshots using Global Snapshot Algorithm
• Detect cycles in the snapshot
• Abort tasks to break the cycle

24

Transactions

Series of operations executed by clients
Operations may be locally executed or
via an RPC to a server
Transactions either commits or aborts
• Commit – An operation completes and

reflect updates on server-side data
• Abort – An operation fails/aborts and has

no effect on the server

25

Transactions

Series of operations executed by clients
Operations may be locally executed or
via an RPC to a server
Transactions either commits or aborts
• Commit – An operation completes and

reflect updates on server-side data
• Abort – An operation fails/aborts and has

no effect on the server

26

int transaction_id = transaction_start()

curr_balance = server.getbalance(“XYZA”);
If (curr_balance > transfer_amount)
 server.withdraw(“XYZA”, curr_balance
 – transfer_amount);
 server.deposit(“ABCD”,
 transfer_amount);

transaction_close()

ACID Properties

All transactions adhere to ACID Properties
• Atomicity – All or Nothing

• Transaction either commits or aborts
• Consistency – Follow the Rules

• Transaction does not violate system invariants
• Isolation – Mind Your Own Business

• Concurrent transactions do not interfere with each other
• Durability (Persistence) – Remember Everything

• Once a transaction commits, the changes are permanent

27

Issues with Transactions – Lost-Update

28

Balance
A = $100
B = $200
C = $300

Issue with Transactions – Inconsistent Retrieval

29

Balance
A = $200
B = $200
C = $200

Concurrent Transactions

Multiple transactions execute concurrently in real-world
To prevent transaction from affecting each other
• Serially execute transactions one at a time

• Slow; Not efficient;
• Would you be a customer of such a slow service? 🙄

Ideally, we want to increase concurrency while maintaining ACID
properties

30

Serial Equivalence Interleaving

If each of several transactions is known to have the correct effect when
it is done on its own, then we can infer that if these transactions are
done one at a time in some order the combined effect will also be
correct.
Serially Equivalent Interleaving – An interleaving of the operations of
transactions in which the combined effect is the same as if the
transactions had been performed one at a time in some order.

31

Conflicting Operations

A pair of operations conflicts means the combined effect depends on
the other in which they are executed
Conflict rules for read and write

32

Resolving conflicts

Reactive approach – check for serial equivalence at commit time with
all other transactions
• Only bother about overlapping transactions

If not serially equivalent
• Abort the transaction

Can we do better?
• Prevent violations from occurring

Two approaches – Pessimistic and Optimistic

33

Pessimistic vs. Optimistic

Pessimistic: Assume the worst; prevent transactions from accessing the
same objects
• Better when data is updated/written frequently
• Use locks for exclusive access
• Use Reader-Writer Locks to improve performance; Readers can run

concurrently; Writers have exclusive access
Optimistic: Assume the best; allow transactions to proceed, but check
later
• Better when data is not updated frequently
• Less chances of aborting the transactions
• Multiple ways – Timestamp Ordering, Multi-version Concurrency Control

34

Distributed Transactions

In a distributed transaction, multiple objects residing on different
servers involved
During commit
• Need to ensure all servers commit their corresponding update
• If one server fails to commit, everyone aborts; Transaction abort happens
• Like consensus problem – everyone agrees for a commit or abort

35

One Phase Commit

36

One Phase Commit

Problems
• Server with objects has no

say in the decision making
• Issues like deadlock

prevention handling, server
crash, etc. could happen
forcing server to abort

• Need a better way

37

Two Phase Commit

38

