Distributed Systems
Fall 2024

Yuvraj Patel



Today’s Agenda

Mutual Exclusion
Deadlocks
Transactions



Why Mutual Exclusion?

Balance = Balance + 1 equivalent in assembly

mov Ox123, %eax
add %0x1, %eax
mov %eax, ©0x123

Want 3 instructions to execute as an uninterruptable group
* Want them to be atomic; appears that all execute at once, or none execute

Uninterruptable group of code is called critical section

More general: Need mutual exclusion for critical sections
* If thread A is in critical section C, thread B isn’t
* Itis fine if other threads do unrelated work



Distributed Locking

Cannot share local lock variables
How do we support mutual exclusion in a distributed system?
Let us start simple with a central solution



Distributed Lock — Central Solution

System Model
e Each pair of nodes is connected by reliable channels
* Messages are eventually delivered to recipient, and in FIFO order
* Nodes do not fail

Central Solution

* Elect a central leader using election algorithm
* Leader keeps a queue of waiting requests from nodes who wish to access CS



Distributed Lock — Central Solution (contd...)

Request OK

/ | ‘ Queue is
empt
Coordinator Pt

Step 1

Node P1 asks the coordinator
for permission to access a
shared resource. Permission is
granted.

Step 2

Node P2 then asks permission
to access the same resource.

The Coordinator does not reply.

Release
OK
Step 3

When P1 releases the resource,
it tells the coordinator, which

then replies to P2.



Distributed Lock — Central Solution (contd...)

Request OK

/ | ‘ Queue is
empt
Coordinator Pt

Step 1

Node P1 asks the coordinator
for permission to access a
shared resource. Permission is
granted.

Step 2

Node P2 then asks permission
to access the same resource.

The Coordinator does not reply.

Problems????

Release
OK
Step 3

When P1 releases the resource,
it tells the coordinator, which

then replies to P2.



Distributed Solution

Decentralized approach
* All nodes involved in the decision making of who should access the resource

Ricart-Agarwala Algorithm
Use the notion of causality — rely on logical timestamps



Ricart-Agrawala Algorithm

Requestor Receiver

1. Broadcast a message to all receiver (including itself)
<Resource-Name, Node-Name, Logical Timestamp>

2. If receiver not accessing the resource or does not
want to access it, send OK message to the sender.
If the receiver already has access to the resource. Do
not reply. Queue the request.
If receiver wants to access the resource but has not
yet done, compare the timestamp
If incoming message has lower timestamp:
send OK message to the sender
Else:
Queue the incoming request and

send nothing
3. Wait for all the OK messages.

4. Access resources once all receivers send OK message.
5. Release the resource; Send OK message to all queue entries



Ricart-Agrawala Algorithm Example

8 Accesses

' resource
) ()
) OK ‘\OK
(D2 (—>(2)
OK
12

Step 1 Step 2

8

Step 1: Two nodes want to access a shared resource at the same moment.
Step 2: PO has the lowest timestamp, so it wins.

OK
@ @ Accesses
resource

Step 3

Step 3: When process PO is done, it sends an OK message to P2. P2 can access the resource thereafter.

10



Ricart-Agrawala Algorithm Example

8 Accesses

' resource
(0, (o) ok
8 3 12 OK “)K
oZ0, O B
12 G e resource
9 oK
12

Step 1 Step 2 Step 3

Step 1: Two nodes want to access a shared resource at the same moment.
Step 2: PO has the lowest timestamp, so it wins.
Step 3: When process PO is done, it sends an OK message to P2. P2 can access the resource thereafter.

Problems???? 1



Token Ring Algorithm

All nodes arranged in a ring fashion

Use token as a means of ownership W Token

« Whosoever has the token can access the m
resource
(De—(e)«—(5)«—(4)

* If no access needed, pass it on to the
neighbor

* Token gets passed to all the nodes

Problems???? 12



Deadlocks

No progress can be made because two or more nodes are each waiting
for another to take some action and thus each never does

Deadlocks can only happen with these four conditions
1. Mutual Exclusion

2. Hold-and-wait @ @
A

3. No preemption
4. Circular Wait

Leads to safety property violation

D Bc
® &

13




Deadlock Example — Real World Case

Both cars arrive at same time
Is this deadlocked?

Conditions necessary for a deadlock:
1. mutual exclusion

2. hold-and-wait

3. no preemption

4. circular wait

14



Deadlock Example — Real World Case (contd..)

4 cars arrive at same time
Is this deadlocked? |

Conditions necessary for a deadlock:

1. mutual exclusion

2. hold-and-wait |
3. no preemption

4. circular wait

15



Deadlock Example — Real World Case (contd..)

4 cars arrive at same time
Is this deadlocked? |

Conditions necessary for a deadlock:

1. mutual exclusion

2. hold-and-wait |
3. no preemption

4. circular wait

16



Deadlocks Handling

Two main strategies
* Prevention — Eliminate any one condition

e Detect and Handle @

O
A




Eliminate Hold-And-Wait Condition

Problem: Nodes hold resources while waiting for additional resources

Deadlock Prevention Strategy

* Acquire all the locks atomically
* Can release locks over time, but cannot acquire again until all locks have been
released

How?
* Use a meta lock



Eliminate Hold-And-Wait Condition (contd...)

lock(&meta); lock(&meta); lock(&meta);

lock(&L1); lock(&L2); lock(&L1);
lock(&L2); lock(&L1); unlock(&meta);
lock(&L3); unlock(&meta);

- // CS1
unlock(&meta); // CS1 unlock(&L1);
// CS1 unlock(&L1);

unlock(&L1);

// CS 2 // CS2

Unlock(&L2); Unlock(&L2);



Eliminate Hold-And-Wait Condition (contd...)

lock(&meta);
lock(&L1);
lock(&L2);
lock(&L3);

unlock(&meta);
// CS1
unlock(&L1);
// CS 2
Unlock(&L2);

lock(&meta);
lock(&L2);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

// CS2
Unlock(&L2);

lock (&meta);
lock(&L1);
unlock(&meta);

// CS1
unlock(&L1);

Disadvantages

* Must know ahead of time
which locks will be needed

* Must be conservative (acquire
any lock possibly needed)

* Degenerates to just having one
big lock (reduces concurrency)



Eliminate No Preemption Condition

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
lock(A);
if (trylock (B) ==-1) {
unlock(A);
goto top;



Eliminate No Preemption Condition (contd...)

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
P Livelock:

!OCk(A); No processes make progress, but state of

if (trylock (B) ==-1){ involved processes constantly changes
unlock(A); Classic solution: Exponential random
goto top; back-off



Eliminate No Preemption Condition

Problem: Locks cannot be forcibly removed from nodes that are held
Strategy: If thread can’t get what it wants, release what it holds

top:
Other strategy: Use timeouts instead of

!OCk(A); trylock. If lock not acquired within a
it {trylock (B) == -1) { timeout, release locks
unlock(A); Problem: How long should be the
goto top; timeout?



Detect Circular Wait Dependency

Another strategy is to detect deadlocks

Find cycles in the wait graphs
* Take snapshots using Global Snapshot Algorithm
* Detect cycles in the snapshot
* Abort tasks to break the cycle



Transactions

Series of operations executed by clients

Operations may be locally executed or
via an RPC to a server

Transactions either commits or aborts

* Commit — An operation completes and
reflect updates on server-side data

* Abort — An operation fails/aborts and has
no effect on the server



Transactions

Series of operations executed by clients

Operations may be locally executed or
via an RPC to a server

Transactions either commits or aborts

* Commit — An operation completes and
reflect updates on server-side data

* Abort — An operation fails/aborts and has
no effect on the server

int transaction_id = transaction_start()

curr_balance = server.getbalance(“XYZA”);
If (curr_balance > transfer_amount)
server.withdraw(“XYZA”, curr_balance
— transfer_amount);
server.deposit(“ABCD”,
transfer_amount);

transaction_close()



ACID Properties

All transactions adhere to ACID Properties
e Atomicity — All or Nothing
* Transaction either commits or aborts
e Consistency — Follow the Rules
* Transaction does not violate system invariants
* Isolation — Mind Your Own Business
* Concurrent transactions do not interfere with each other
* Durability (Persistence) — Remember Everything
* Once a transaction commits, the changes are permanent



Issues with Transactions — Lost-Update

Transaction T

balance = b.getBalance( ),
b.setBalance(balance*1.1);
a.withdraw(balance/10)

balance = b.getBalance();  $200

b.setBalance(balance*1.1);  $220
a.withdraw(balance/10) $80

Transaction U:

balance = b.getBalance(),

Balance
b.setBalance(balance*1.1); A = $100
c.withdraw(balance/10) B =5200

C=5300

balance = b.getBalance(), $200
b.setBalance(balance*1.1);  $220

c.withdraw(balance/10) $280




Issue with Transactions — Inconsistent Retrieval

Transaction V:

a.withdraw(100)
b.deposit(100)
a.withdraw(100);

b.deposit(100)

$100

$300

Transaction W:
aBranch.branchTotal()

total = a.getBalance( ) $100
total = total + b.getBalance()  $300

total = total + c.getBalance()

Balance

A =S$200
B =5200
C=5200



Concurrent Transactions

Multiple transactions execute concurrently in real-world

To prevent transaction from affecting each other

* Serially execute transactions one at a time
* Slow; Not efficient;
* Would you be a customer of such a slow service? &

Ideally, we want to increase concurrency while maintaining ACID
properties



Serial Equivalence Interleaving

If each of several transactions is known to have the correct effect when
it is done on its own, then we can infer that if these transactions are
done one at a time in some order the combined effect will also be
correct.

Serially Equivalent Interleaving — An interleaving of the operations of
transactions in which the combined effect is the same as if the
transactions had been performed one at a time in some order.



Conflicting Operations

A pair of operations conflicts means the combined effect depends on
the other in which they are executed

Conflict rules for read and write

Operations of different  Conflict Reason
transactions
Because the effect of a pair of read operations does
read read No ] ]
not depend on the order in which they are executed
. Because the effect of a read and a write operation
read write Yes i .
depends on the order of their execution
) . Because the effect of a pair of write operations
write write Yes

depends on the order of their execution




Resolving conflicts

Reactive approach — check for serial equivalence at commit time with

all other transactions
* Only bother about overlapping transactions

If not serially equivalent
e Abort the transaction

Can we do better?
* Prevent violations from occurring

Two approaches — Pessimistic and Optimistic



Pessimistic vs. Optimistic

Pessimistic: Assume the worst; prevent transactions from accessing the
same objects

* Better when data is updated/written frequently

* Use locks for exclusive access

* Use Reader-Writer Locks to improve performance; Readers can run
concurrently; Writers have exclusive access

Optimistic: Assume the best; allow transactions to proceed, but check

later
* Better when data is not updated frequently
* Less chances of aborting the transactions
* Multiple ways — Timestamp Ordering, Multi-version Concurrency Control



Distributed Transactions

In a distributed transaction, multiple objects residing on different
servers involved

During commit
* Need to ensure all servers commit their corresponding update
* If one server fails to commit, everyone aborts; Transaction abort happens
* Like consensus problem — everyone agrees for a commit or abort



One Phase Commit




One Phase Commit

Problems

* Server with objects has no
say in the decision making
* |ssues like deadlock

prevention handling, server
crash, etc. could happen
forcing server to abort

* Need a better way



Two Phase Commit




