
Distributed Systems
Fall 2025

Yuvraj Patel

Disclaimer: Slides prepared using multiple sources (UW-Madison – Remzi, Andrea, Mike; Cambridge 
– Martin Kleepman; Distributed Systems book by MVS/ AST); University of Edinburgh – Yuvraj Patel



Today’s Agenda

Communication
• Fundamentals
• Remote Procedure Calls

2



Computation vs. Communication

Processes/Threads/VMs/Nodes perform computation 
They alone cannot comprise the Distributed System
The interaction between the computational components make any 
system a distributed system
• Like human beings and society

Some methodology needed to let the computational components 
interact

3



Communication

Communication not a prerogative for distributed systems only
• Single node/process can communicate using function calls, IPC, etc.

Communication paradigms describe and classify a set of methods by 
which computational nodes can interact and exchange data
Communication involves many problems/issues
• Physical transmission to application level
• Need to standardize to make things easy

4



Middleware Protocols

Middleware mostly attached to applications
Middleware service protocols different from application-level protocols
Middleware Protocols are application-independent unlike application-
level protocols
Session & Presentation layers replaced by middleware layer and is 
application-independent 
• Transport layer could be offered in the middleware layer

5



Types of Communication

Persistent vs Transient
Persistent à Message sent is 
stored by the middleware until 
it is delivered to the receiver; 
Example – Email server
Transient à Message sent is 
stored by the middleware only 
as long as both the receiver and 
sender executing; Example – 
RPC

6



Types of Communication (contd…)

Asynchronous vs. Synchronous
Asynchronous à Sender keeps 
on executing after sending a 
message
Synchronous à Sender blocks 
execution after sending a 
message and waits for response; 
3 levels of responses

7



Classification of Communication Paradigms

8

Three categories
• Same address space – Global Variables, Procedure calls
• Different address spaces (Within a computer) – Files, Shared Memory, Signals
• Different address space (Multiple computers) – Shared Memory, Message 

Passing – RPC, sockets



Distributed Shared Memory

9

P1 P2 P3

Interconnect

M M

P1 P2 P3

InterconnectM M

Different machines

M

One single address space



Message Passing

Assume no explicit sharing of data elements in the address space of 
computational components
Essence of message passing is copying
• Implementation may avoid copying wherever possible

Problem-solving with messages – more active involvement by 
participants
Send and Receive two main primitives
Client<—>Server interaction

10



Socket Programming

Socket – Software structure that 
serves as endpoint for sending and 
receiving data across the network
Several APIs to interact with 
sockets

11

Operation Description

socket Create a new communication end point

bind Attach a local address to a socket

listen Tell OS what is the maximum number of pending 
connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection



Socket Code in Python

12



Remote Procedure Call

Allow remote services to be called as procedures
• Transparency with respect to location, implementation, 

language, etc.

Goal is to make distributed computing look like 
centralized computing
Basic Idea

• Programs can call procedures on other machines
• When process A calls a procedure foo() on machine B, A is 

suspended
• Execution of foo() takes place on machine B
• After execution of foo(), the result is sent back to A, which 

resumes execution

13



Procedure Call to Remote Procedure Call

14

main() add()

add(10, 10)

20

Computer

Process



Procedure Call to Remote Procedure Call

15

main()
add()

(Shared 
library)

add(10, 10)

20

Computer

Process

main()

Process
add(100, 10)

110



16

Procedure Call to Remote Procedure Call

Computer

main()

add(10, 10)

20

Process

main()

Processadd(100, 10)

110

Computer

Computer

add()



17

Procedure Call to Remote Procedure Call

main()

add(10, 10)

20

Process

main()

Process

add(100, 10)

110

Computer

Computer

add()

Client Stub Client Stub
Server Stub



RPC – Challenges 

Separate callee and caller address space
• How to transfer data?
• Need for a common reference space

Machines may be different
• Parameters and results must be passed and handled correctly

Thousands of procedures exported by servers
• How does client locate a server?

Client and server might fail independently
• How to handle failures?

18



Parameter Passing

Marshalling/Packing – Parameters passed into a message to be 
transmitted
Both parameters and results must be marshalled
Two types of parameters
• Value – directly encoded into the message
• Reference – Can lead to incorrect results (or crash); Solutions??? 

Client and Server stub takes care of marshalling

19



Parameter Passing (contd…)

20



Data Representation

Different micro-architecture and OS
• Size of data-type differs – size of long in 32-bit vs. 64-bit machines
• Format in which data is stored – Little-endian vs. Big-endian

Client and server must agree on how simple data is represented in the 
message
• Rely on Interface Definition Language (IDL) for the specification
• Stub compiler generates stub automatically from the specification

21



Binding

Binder
• Use bindings to let clients locate a server

Server
• Export server interfaces during initialization
• Send name, version number, unique identifier, handle to a binder

Client
• Send message to binder to import server interface
• Binder will check to see if a server has exported valid interface
• Return handle and unique identified to client

Binding may incur overhead
• Multiple binders – Replicate binding information; More availability; Load Balancing

22



Asynchronous RPC

Request-reply behavior may not be 
needed
• Blocking may waste resources

Asynchronous behavior – Client 
continue without waiting for an answer 
from the server

23



Demo

24



Failure Handling

Next Class…

25


