Elements of Programming Languages

Lecture 13: Small-step semantics and type safety

James Cheney

University of Edinburgh

November 13, 2023
Overview

For the remaining lectures we consider some cross-cutting considerations for programming language design.

- Last time: Imperative programming

Today:

- Finer-grained (small-step) evaluation
- Type safety
Refresher

- In the first 6 lectures we covered:
 - Basic arithmetic (L_{Arith})
 - Conditionals and booleans (L_{If})
 - Variables and let-binding (L_{Let})
 - Functions and recursion (L_{Rec})
 - Data structures (L_{Data})
- formalized using big-step evaluation ($e \Downarrow v$) and type judgments ($\Gamma \vdash e : \tau$)
- and implemented using Scala interpreters
Limitations of big-step semantics

- Big-step semantics is convenient, but also limited
- It says how to evaluate the “whole program” (expression) to its “final value”
 - But what if there is no final value?
 - Expressions like 1 + true simply don’t evaluate
 - Nonterminating programs don’t evaluate either, but for a different reason!
- As we will see in later lectures, it is also difficult to deal with other features, like exceptions, using big-step semantics
Small-step semantics

- We will now consider an alternative: *small-step semantics*

 \[e \rightarrow e' \]

- which says how to evaluate an expression “one step at a time”

- If \(e_0 \rightarrow \cdots \rightarrow e_n \) then we write \(e_0 \rightarrow* e_n \). (in particular, for \(n = 0 \) we have \(e_0 \rightarrow* e_0 \))

- We want it to be the case that \(e \rightarrow* v \) if and only if \(e \Downarrow v \).

- But \(\rightarrow \) provides more detail about how this happens.

- It also allows expressions to “go wrong” (get stuck before reaching a value)
Small-step semantics: \(L_{\text{Arith}} \)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e \mapsto e')</td>
<td>for (L_{\text{Arith}})</td>
</tr>
<tr>
<td>(e_1 \mapsto e'_1)</td>
<td>(e_1 \oplus e_2 \mapsto e'_1 \oplus e_2)</td>
</tr>
<tr>
<td>(v_1 \oplus e_2 \mapsto v_1 \oplus e'_2)</td>
<td>(v_1 \oplus v_2 \mapsto v_1 +_N v_2)</td>
</tr>
<tr>
<td>(v_1 \times v_2 \mapsto v_1 \times_N v_2)</td>
<td></td>
</tr>
</tbody>
</table>

- If the first subexpression of \(\oplus \) can take a step, apply it.
- If the first subexpression is a value and the second can take a step, apply it.
- If both sides are values, perform the operation.
- Example:

\[
1 + (2 \times 3) \mapsto 1 + 6 \mapsto 7
\]
Small-step semantics: L_{If}

- $v \equiv v \mapsto \text{true}$
- $v_1 \neq v_2 \mapsto \text{false}$

- $e \mapsto e'$
 - if e then e_1 else e_2 \mapsto if e' then e_1 else e_2
 - if true then e_1 else e_2 \mapsto e_1
 - if false then e_1 else e_2 \mapsto e_2

- If the conditional test is not a value, evaluate it one step
- Otherwise, evaluate the corresponding branch

$$\text{if } 1 \equiv 2 \text{ then } 3 \text{ else } 4 \mapsto \text{if false then } 3 \text{ else } 4 \mapsto 4$$
Small-step semantics: L_{Let}

If the expression e_1 is not yet a value, evaluate it one step.

Otherwise, substitute it and proceed.

Example:

$\text{let } x = 1 + 1 \text{ in } x \times x \mapsto \text{let } x = 2 \text{ in } x \times x$

$\mapsto 2 \times 2$

$\mapsto 4$
Small-step semantics: L_{Lam}

- If the function part is not a value, evaluate it one step
- If the function is a value and the argument isn’t, evaluate it one step
- If both function and argument are values, substitute and proceed

\[
((\lambda x. \lambda y. x + y) \ 1)\ 2 \quad \mapsto \quad (\lambda y. 1 + y)\ 2 \\
\quad \mapsto \quad 1 + 2 \mapsto 3
\]
Small-step semantics: \(L_{\text{Rec}} \)

\[
\begin{array}{c}
\text{for } L_{\text{Rec}} \\
\hline
(\text{rec } f(x). \text{e}) \nu \rightarrow \text{e}[\text{rec } f(x).\text{e}/f, \nu/x]
\end{array}
\]

- Same rules for evaluation inside application
- Note that we need to substitute \(\text{rec } f(x).\text{e} \) for \(f \).
- Suppose \(\text{fact} \) is the factorial function:

\[
\text{fact} \ 2 \quad \rightarrow \quad \text{if } 2 \text{ == } 0 \text{ then } 1 \text{ else } 2 \times \text{fact}(2 - 1) \\
\rightarrow \quad \text{if false then } 1 \text{ else } 2 \times \text{fact}(2 - 1) \\
\rightarrow \quad 2 \times \text{fact}(2 - 1) \rightarrow 2 \times \text{fact}(1) \\
\rightarrow \quad 2 \times \left(\text{if } 1 \text{ == } 0 \text{ then } 1 \text{ else } 1 \times \text{fact}(1 - 1) \right) \\
\rightarrow \quad 2 \times \left(\text{if false then } 1 \text{ else } 1 \times \text{fact}(1 - 1) \right) \\
\rightarrow \quad 2 \times (1 \times \text{fact}(1 - 1)) \rightarrow 2 \times (1 \times \text{fact}(0)) \\
\rightarrow^{*} \quad 2 \times (1 \times 1) \rightarrow 2 \times 1 \rightarrow 2
\]
A judgment is a relation among one or more abstract syntax trees.

Examples so far: $e \Downarrow v$, $\Gamma \vdash e : \tau$, $e \mapsto e'$

We have been defining judgments using rules of the form:

\[
\frac{P_1 \quad \cdots \quad P_n}{Q}
\]

where P_1, \ldots, P_n and Q are judgments.
Meaning of Rules

- A rule of the form:
 \[\frac{\text{}}{Q} \]
 is called an axiom. It says that \(Q \) is always derivable.

- A rule of the form
 \[\frac{P_1 \ldots P_n}{Q} \]
 says that judgment \(Q \) is derivable if \(P_1, \ldots, P_n \) are derivable.

- Symbols like \(e, v, \tau \) in rules stand for arbitrary expressions, values, or types.

- (If you are familiar with Logic Programming: These rules are a lot like Prolog clauses!)
Rule induction

Induction on derivations of $e \Downarrow v$

Suppose $P(-, -)$ is a predicate over pairs of expressions and values. If:

- $P(v, v)$ holds for all values v
- If $P(e_1, v_1)$ and $P(e_2, v_2)$ then $P(e_1 + e_2, v_1 +_\mathbb{N} v_2)$
- If $P(e_1, v_1)$ and $P(e_2, v_2)$ then $P(e_1 \times e_2, v_1 \times_\mathbb{N} v_2)$

then $e \Downarrow v$ implies $P(e, v)$.

- Rule induction can be derived from mathematical induction on the size (or height) of the derivation tree.
- (Much like structural induction.)
- We won’t formally prove this.
Example: \(e \Downarrow v \) implies \(e \rightarrow^* v \)

- As an example, we’ll show a few cases of the forward direction of:

Theorem (Equivalence of big-step and small-step evaluation)

\[e \Downarrow v \text{ if and only if } e \rightarrow^* v. \]

Base case.

If the derivation is of the form

\[\boxed{n \Downarrow n} \]

for some number \(n \), then \(e = n \) is already a value \(v = n \), so no steps are needed to evaluate it, i.e. \(n \rightarrow^* n \) in zero steps.
Example: $e \Downarrow \nu$ implies $e \Rightarrow^* \nu$

Inductive case.

If the derivation is of the form

$$
\frac{e_1 \Downarrow \nu_1 \quad e_2 \Downarrow \nu_2}{e_1 + e_2 \Downarrow \nu_1 +_N \nu_2}
$$

then by induction, we know $e_1 \Rightarrow^* \nu_1$ and $e_2 \Rightarrow^* \nu_2$. Using the small-step rules, we can then show

$$
e_1 + e_2 \Rightarrow^* \nu_1 + e_2 \Rightarrow^* \nu_1 + \nu_2 \Rightarrow \nu_1 +_N \nu_2
$$

The case for \times is similar.
Type soundness

- The central property of a type system is soundness.
- Roughly speaking, soundness means “well-typed programs don’t go wrong” [Milner].
- But what exactly does “go wrong” mean?
 - For large-step: hard to say
 - For small-step: “go wrong” means “stuck” expression e that is not a value and cannot take a step.

We could show something like:

Theorem (Value Soundness)

If $\vdash e : \tau$ and $e \to^* v$ then $\vdash v : \tau$.

This says that if an expression evaluates to a value, then the value has the right type.
Type soundness revisited

- We can decompose soundness into two parts:

Lemma (Progress)

If $\vdash e : \tau$ then e is not stuck: that is, either e is a value or for some e' we have $e \xrightarrow{} e'$.

Lemma (Preservation)

If $\vdash e : \tau$ and $e \xrightarrow{} e'$ then $\vdash e' : \tau$

- Combining these two, can show:

Theorem (Soundness)

If $\vdash e : \tau$ then e is not stuck and if $e \xrightarrow{*} e'$ then $\vdash e' : \tau$.

- We will *sketch* these properties for L_{lf} (leaving out a lot of formal detail)
Progress for L_{lf}

Progress is proved by induction on $\vdash e : \tau$ derivations. We show some representative cases.

Progress for $+$.

\[
\frac{\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}}{\vdash e_1 + e_2 : \text{int}}
\]

If the derivation is of the above form, then by induction e_1 is either a value or can take a step, and likewise for e_2. There are three cases.

- If $e_1 \mapsto e_1'$ then $e_1 + e_2 \mapsto e_1' + e_2$.
- If e_1 is a value v_1 and $e_2 \mapsto e_2'$, then $v_1 + e_2 \mapsto v_1 + e_2'$.
- If both e_1 and e_2 are values then they must both be numbers $n_1, n_2 \in \mathbb{N}$, so $e_1 + e_2 \mapsto n_1 + n_2$.
Progress for L\textsubscript{If}

\begin{itemize}
 \item If the derivation is of the form
 \[
 \begin{array}{c}
 \vdash e : \text{bool} \\
 \vdash e_1 : \tau \\
 \vdash e_2 : \tau \\
 \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau \\
 \end{array}
 \]
 then by induction, either \(e \) is a value or can take a step. There are two cases:
 \begin{itemize}
 \item If \(e \mapsto e' \) then
 \[
 \text{if } e \text{ then } e_1 \text{ else } e_2 \mapsto \text{if } e' \text{ then } e_1 \text{ else } e_2.
 \]
 \item If \(e \) is a value, it must be either true or false. In the first case, if true then \(e_1 \) else \(e_2 \mapsto e_1 \), otherwise if false then \(e_1 \) else \(e_2 \mapsto e_2 \).
 \end{itemize}
\end{itemize}
Preservation for L_{if}

Preservation is proved by induction on the structure of $\vdash e : \tau$. We’ll consider some representative cases:

Preservation for $+.$

$$
\begin{array}{c}
\vdash e_1 : \text{int} \\
\vdash e_2 : \text{int}
\end{array}
\quad \Rightarrow
\quad
\vdash e_1 + e_2 : \text{int}
$$

If the derivation is of the above form, there are three cases.

- If $e_i = v_i$ and $v_1 + v_2 \mapsto v_1 +_N v_2$ then obviously $\vdash v_1 +_N v_2 : \text{int}$.
- If $e_1 + e_2 \mapsto e'_1 + e_2$ where $e_1 \mapsto e'_1$, then since $\vdash e_1 : \text{int}$, we have $\vdash e'_1 : \text{int}$, so $\vdash e'_1 + e_2 : \text{int}$ also.
- The case where $e_1 = v_1$ and $v_1 + e_2 \mapsto v_1 + e'_2$ is similar.
Preservation for \(L_{if} \)

Preservation for if.

If the derivation is of the form

\[
\frac{\vdash e : \text{bool} \quad \vdash e_1 : \tau \quad \vdash e_2 : \tau}{\vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}
\]

then there are three cases:

- If \(e \Rightarrow e' \), then by induction we can show that \(\vdash e' : \text{bool} \) and \(\vdash \text{if } e' \text{ then } e_1 \text{ else } e_2 : \tau \).
- If \(e = \text{true} \) then \(\text{if true then } e_1 \text{ else } e_2 \Rightarrow e_1 \), so we already know \(\vdash e_1 : \tau \).
- The case for \(\text{if false then } e_1 \text{ else } e_2 \Rightarrow e_2 \) is similar.
Type soundness for L_{Let} [non-examinable]

- Progress: straightforward (a “let” can always take a step)
- Preservation: Suppose we have

$$\Gamma, x : \tau' \vdash e_2 : \tau$$
$$\vdash \text{let } x = v_1 \text{ in } e_2 : \tau$$

$$\text{let } x = v_1 \text{ in } e_2 \rightarrow e_2[v_1/x]$$

We need to show that $\vdash e_2[v_1/x] : \tau$

- For this we need a substitution lemma

Lemma (Substitution)

If $\Gamma, x : \tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$ then $\Gamma \vdash e[e'/x] : \tau$
Type soundness for L_{Rec} [non-examinable]

- **Progress**: If an application term is well-formed:

 $\vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \vdash e_2 : \tau_1 \\
 \vdash e_1 \ e_2 : \tau_2$

 then by induction, e_1 is either a value or $e_1 \mapsto e'_1$ for some e'_1. If it is a value, it must be either a lambda-expression or a recursive function, so $e_1 \ e_2$ can take a step. Otherwise, $e_1 \ e_2 \mapsto e'_1 \ e_2$.

- **Preservation**: Similar to let, using substitution lemma for the cases

 $$(\lambda x. \ e) \ v \mapsto e[v/x]$$
 $$(\text{rec } f(x). \ e) \ v \mapsto e[\text{rec } f(x). \ e/f, v/x]$$
Summary

- Today we have presented
 - Small-step evaluation: a finer-grained semantics
 - Induction on derivations
 - Type soundness (details for L_{lf})
 - Sketch of type soundness for L_{Rec} [Non-examinable]
- Deep breath: No more induction proofs from now on.
- Remaining lectures cover cross-cutting language features, which often have subtle interactions with each other
 - Next time: Imperative programming revisited: references, arrays and other resources.