Elements of Programming Languages
 Lecture 2: Evaluation

James Cheney

University of Edinburgh
September 29, 2022

Overview

- Last time:
- Concrete vs. abstract syntax
- Programming with abstract syntax trees
- A taste of induction over expressions
- Today:
- Evaluation
- A simple interpreter
- Modeling evaluation using rules

Values

- Recall $L_{\text {Arith }}$ expressions:

$$
\text { Expr } \ni e::=e_{1}+e_{2}\left|e_{1} \times e_{2}\right| n \in \mathbb{N}
$$

- Some expressions, like 1,2,3, are special
- They have no remaining "computation" to do
- We call such expressions values.
- We can define a BNF grammar rule for values:

$$
\text { Value } \ni v::=n \in \mathbb{N}
$$

Evaluation, informally

- Given an expression e, what is its value?
- If $e=n$, a number, then it is already a value.
- If $e=e_{1}+e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then add v_{1} and v_{2}, the result is the value of e.
- If $e=e_{1} \times e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then multiply v_{1} and v_{2}, the result is the value of e.

Evaluation, in Scala

- If $e=n$, a number, then it is already a value.
- If $e=e_{1}+e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then add v_{1} and v_{2}, the result is the value of e.
- If $e=e_{1} \times e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then multiply v_{1} and v_{2}, the result is the value of e.

```
def eval(e: Expr): Int = e match {
    case Num(n) => n
    case Plus(e1,e2) => eval(e1) + eval(e2)
    case Times(e1,e2) => eval(e1) * eval(e2)
}
```


Example

Example

$\operatorname{eval}(1)+(e v a l(2) \times \operatorname{eval}(3))=1+(2 \times 3)=1+6=7$

Expression evaluation, more formally

- To specify and reason about evaluation, we use a evaluation judgment.

Definition (Evaluation judgment)

Given expression e and value v, we say v is the value of e if evaluating e results in v, and we write $e \Downarrow v$ to indicate this.

- (A judgment is a relation between abstract syntax trees.)
- Examples:

$$
1+2 \Downarrow 3 \quad 1+2 \times 3 \Downarrow 7 \quad(1+2) \times 3 \Downarrow 9
$$

Evaluation of Values

- A value is already evaluated. So, for any v, we have $v \Downarrow v$.
- We can express the fact that $v \Downarrow v$ always holds (for any v) as follows:

$$
\overline{v \Downarrow v}
$$

- This is a rule that says that v evaluates to v always (no preconditions)
- So, for example, we can derive:

$$
\overline{0 \Downarrow 0} \quad \overline{1 \Downarrow 1}
$$

\ldots

Evaluation of Addition

- How to evaluate expression $e_{1}+e_{2}$?
- Suppose we know that $e_{1} \Downarrow v_{1}$ and $e_{2} \Downarrow v_{2}$.
- Then the value of $e_{1}+e_{2}$ is the number we get by adding numbers v_{1} and v_{2}.
- We can express this as follows:

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N} v_{2}}
$$

- This is a rule that says that $e_{1}+e_{2}$ evaluates to $v_{1}+\mathbb{N} v_{2}$ provided e_{1} evaluates to v_{1} and e_{2} evaluates to v_{2}
- Note that we write $+_{\mathbb{N}}$ for the mathematical function that adds two numbers, to avoid confusion with the abstract syntax tree $v_{1}+v_{2}$.

Expression evaluation: Summary

- Multiplication can be handled exactly like addition.
- We will define the meaning of $L_{\text {Arith }}$ expressions using the following rules:
$e \Downarrow v$

$$
\overline{v \Downarrow v} \quad \frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N} v_{2}} \quad \frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1} \times e_{2} \Downarrow v_{1} \times \mathbb{N} v_{2}}
$$

- This evaluation judgment is an example of big-step semantics (or natural semantics)
- so-called because we evaluate the whole expression "in one step"

Examples

- We can use these rules to derive evaluation judgments for complex expressions:

$$
\frac{\overline{1 \Downarrow 1}}{1+2 \Downarrow 3} \frac{2 \Downarrow 2}{\frac{1 \Downarrow 1}{\frac{2 \Downarrow 2}{3 \Downarrow 3}}} \frac{\frac{\overline{1 \Downarrow 1} \overline{2 \Downarrow 2}}{2 * 3 \Downarrow 6}}{\frac{1+2 \Downarrow 3}{3 \Downarrow 3}}
$$

- These figures are derivation trees showing how we can derive a conclusion from axioms
- The rules govern how we can construct derivation trees.
- A leaf node must match a rule with no preconditions
- Other nodes must match rules with preconditions. (Order matters.)
- Note that derivation trees "grow up" (root is at the bottom)

Totality and Structural induction

- Question: Given any expression e, does it evaluate to a value?
- To answer this question, we can use structural induction:

Induction on structure of expressions

Given a property P of expressions, if:

- $P(n)$ holds for every number $n \in \mathbb{N}$
- for any expressions e_{1}, e_{2}, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ holds then $P\left(e_{1}+e_{2}\right)$ also holds
- for any expressions e_{1}, e_{2}, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ holds then $P\left(e_{1} \times e_{2}\right)$ also holds

Then $P(e)$ holds for all expressions e.

Proof by structural induction

- Let's illustrate with an example

Theorem

If e is an expression, then there exists $v \in \mathbb{N}$ such that $e \Downarrow v$ holds.

Proof: Base case.

If $e=n$ then e is already a value. Take $v=n$, then we can derive

$$
\overline{e \Downarrow n}
$$

Proof by structural induction

Proof: Inductive case 1.

If $e=e_{1}+e_{2}$ then suppose $e_{1} \Downarrow v_{1}$ and $e_{2} \Downarrow v_{2}$ for some v_{1}, v_{2}. Then we can use the rule:

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+{ }_{\mathbb{N}} v_{2}}
$$

to conclude that there exists $v=v_{1}+\mathbb{N} v_{2}$ such that $e \Downarrow v$ holds.

Note that again it's important to distinguish $v_{1}+_{\mathbb{N}} v_{2}$ (the number) from $v_{1}+v_{2}$ the expression.

Proof by structural induction

Proof: Inductive case 2.

If $e=e_{1} \times e_{2}$ then suppose $e_{1} \Downarrow v_{1}$ and $e_{2} \Downarrow v_{2}$ for some v_{1}, v_{2}. Then we can use the rule:

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1} \times e_{2} \Downarrow v_{1} \times \mathbb{N} v_{2}}
$$

to conclude that there exists $v=v_{1} \times_{\mathbb{N}} v_{2}$ such that $e \Downarrow v$ holds.

- This case is basically identical to case 1 (modulo + vs. $\times)$.
- From now on we will typically skip over such "essentially identical" cases (but it is important to really check them).

Uniqueness

We can also prove the uniqueness of the value of v by induction:

Theorem (Uniqueness of evaluation)
 If $e \Downarrow v$ and $e \Downarrow v^{\prime}$, then $v=v^{\prime}$.

Base case.

If $e=n$ then since $n \Downarrow v$ and $n \Downarrow v^{\prime}$ hold, the only way we could derive these judgments is for v, v^{\prime} to both equal n.

Uniqueness

Inductive case.

If $e=e_{1}+e_{2}$ then the derivations must be of the form

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+{ }_{\mathbb{N}} v_{2}} \quad \frac{e_{1} \Downarrow v_{1}^{\prime} e_{2} \Downarrow v_{2}^{\prime}}{e_{1}+e_{2} \Downarrow v_{1}^{\prime}+\mathbb{N} v_{2}^{\prime}}
$$

By induction, $e_{1} \Downarrow v_{1}$ and $e_{1} \Downarrow v_{1}^{\prime}$ implies $v_{1}=v_{1}^{\prime}$, and similarly for e_{2} so $v_{2}=v_{2}^{\prime}$. Therefore $v_{1}+_{\mathbb{N}} v_{2}=v_{1}^{\prime}+\mathbb{N} v_{2}^{\prime}$.

- The proof for $e_{1} \times e_{2}$ is similar.

Totality, uniqueness, and correctness

- The Scala interpreter code defined earlier says how to interpret a $L_{\text {Arith }}$ expression as a function
- The big-step rules, in contrast, specify the meaning of expressions as a relation.
- Nevertheless, totality and uniqueness guarantee that for each e there is a unique v such that $e \Downarrow v$
- In fact, $v=e v a l(e)$, that is:

Theorem (Interpreter Correctness)

For any $\mathrm{L}_{\text {Arith }}$ expression e, we have e $\Downarrow v$ if and only if $v=e v a l(e)$.

- Proof: induction on e.

Summary

- In this lecture, we've covered:
- A simple interpreter
- Evaluation via rules
- Totality and uniqueness (via structural induction)
- all for the simple language $L_{\text {Arith }}$
- Next time:
- Booleans, equality, conditionals
- Types

