Elements of Programming Languages

Lecture 4: Variables, substitution, and scope

James Cheney

University of Edinburgh

October 2, 2023

Variables

- A variable is a symbol that can 'stand for' a value.
- Often written x, y, z, \ldots
- Let's extend L_{If} with variables:

$$egin{array}{ll} e &::=& n\in\mathbb{N}\mid e_1+e_2\mid e_1 imes e_2\ &\mid &b\in\mathbb{B}\mid e_1==e_2\mid ext{if e then e_1 else e_2}\ &\mid &x\in Var \end{array}$$

- Here, x is shorthand for an arbitrary variable in Var, the set of expression variables
- Let's call this language L_{Var}

Aside: Operators, operators everywhere

• We have now considered several binary operators

$$+$$
 \times \wedge \vee \approx

- as well as a unary one (¬)
- It is tiresome to write their syntax, evaluation rules, and typing rules explicitly, every time we add to the language
- We will sometimes represent such operations using schematic syntax $e_1 \oplus e_2$ and rules:

- where $\oplus : \tau_1 \times \tau_2 \to \tau$ means that operator \oplus takes arguments τ_1, τ_2 and yields result of type τ
- (e.g. +: int \times int \rightarrow int, $==:\tau \times \tau \xrightarrow{bool}_{\bullet \in \mathbb{R}} bool)$

Substitution

- We said "A variable can 'stand for' a value."
- What does this mean precisely?
- Suppose we have x + 1 and we want x to "stand for" 42.
- We should be able to *replace* x everywhere in x + 1 with 42:

$$x + 1 \rightsquigarrow 42 + 1$$

• Similarly, if x "stands for" 3 then

if
$$x == y$$
 then x else $y \rightsquigarrow$ if $3 == y$ then 3 else y

Substitution

• Let's introduce a notation for this *substitution* operation:

Definition (Substitution)

Given e, x, v, the substitution of v for x in e is an expression written e[v/x].

• For L_{Var}, define substitution as follows:

$$egin{array}{lll} v_0[v/x] &=& v_0 \ x[v/x] &=& v \ y[v/x] &=& y & (x
eq y) \ (e_1 \oplus e_2)[v/x] &=& e_1[v/x] \oplus e_2[v/x] \ (ext{if e then e_1 else e_2})[v/x] &=& ext{if $e[v/x]$ then $e_1[v/x]$} \ &=& ext{else $e_2[v/x]$} \end{array}$$

Evaluation and types

Scope

 As we all know from programming, we can reuse variable names:

```
def foo(x: Int) = x + 1
def bar(x: Int) = x * x
```

- The occurrences of x in foo have nothing to do with those in bar
- Moreover the following code is equivalent (since y is not already in use in foo or bar):

```
def foo(x: Int) = x + 1
def bar(y: Int) = y * y
```

Scope

Definition (Scope)

The *scope* of a variable name is the collection of program locations in which occurrences of the variable refer to the same thing.

- I am being a little casual here: "refer to the same thing" doesn't necessarily mean that the two variable occurrences evaluate to the same value at run time.
- For example, the variables could refer to a shared reference cell whose value changes over time.
- In that case, the "same thing" they refer to is the reference cell, not the value in it.

Scope, Binding and Bound Variables

- Certain occurrences of variables are called binding
- Again, consider

```
def foo(x: Int) = x + 1
def bar(y: Int) = y * y
```

- The occurrences of x and y on the left-hand side of the definitions are binding
- Binding occurrences define scopes: the occurrences of x and y on the right-hand side are bound
- Any variables not in scope of a binder are called free
- Key idea: Renaming all binding and bound occurrences in a scope consistently (avoiding name clashes) should not affect meaning

 For now, we consider a very basic form of scope: let-binding.

$$e ::= \cdots \mid x \mid \text{let } x = e_1 \text{ in } e_2$$

- We define L_{Let} to be L_{If} extended with variables and let.
- In an expression of the form let $x = e_1$ in e_2 , we say that x is *bound* in e_2
- Intuition: let-binding allows us to use a variable x as an abbreviation for (the value of) some other expression:

let
$$x = 1 + 2$$
 in $4 \times x \rightsquigarrow 1$ et $x = 3$ in $4 \times x \rightsquigarrow 4 \times 3$

Equivalence up to consistent renaming

- We wish to consider expressions equivalent (written $e_1 \equiv e_2$) if they have the same binding structure
- We can rename bound names to get equivalent expressions:

$$let x = y + z in x == w \equiv let u = y + z in u == w$$

But some renamings change the binding structure:

$$let x = y + z in x == w \not\equiv let w = y + z in w == w$$

- Intuition: Renaming to u is fine, because u is not already "in use".
- But renaming to w changes the binding structure, since w was already "in use".

Free variables

• The set of *free variables* of an expression is defined as:

$$FV(n) = \emptyset$$

$$FV(x) = \{x\}$$

$$FV(e_1 \oplus e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(\text{if } e \text{ then } e_1 \text{ else } e_2) = FV(e) \cup FV(e_1) \cup FV(e_2)$$

$$FV(\text{let } x = e_1 \text{ in } e_2) = FV(e_1) \cup (FV(e_2) - \{x\})$$

where X - Y is the set of elements of X that are not in Y

$${x,y,z} - {y} = {x,z}$$

- (Recall that $e_1 \oplus e_2$ is shorthand for several cases.)
- Examples:

$$FV(x + y) = \{x, y\}$$
 $FV(\text{let } x = y \text{ in } x) = \{y\}$
 $FV(\text{let } x = x + y \text{ in } z) = \{x, y, z\}$

Renaming

 We will also use the following swapping operation to rename variables:

$$x(y\leftrightarrow z) = \begin{cases} y & \text{if } x=z \\ z & \text{if } x=y \\ x & \text{otherwise} \end{cases}$$
 $v(y\leftrightarrow z) = v$
 $(e_1\oplus e_2)(y\leftrightarrow z) = e_1(y\leftrightarrow z)\oplus e_2(y\leftrightarrow z)$
 $(\text{if } e \text{ then } e_1 \text{ else } e_2)(y\leftrightarrow z) = \text{if } e(y\leftrightarrow z) \text{ then } e_1(y\leftrightarrow z) \oplus e_2(y\leftrightarrow z)$
 $(\text{let } x=e_1 \text{ in } e_2)(y\leftrightarrow z) = \text{let } x(y\leftrightarrow z) = e_1(y\leftrightarrow z) \oplus e_2(y\leftrightarrow z)$
 $(\text{let } x=e_1 \text{ in } e_2)(y\leftrightarrow z) = \text{let } x(y\leftrightarrow z) = e_1(y\leftrightarrow z)$

• Example:

$$(let x = y in x + z)(x \leftrightarrow z) = let z = y in z + x$$

Alpha-conversion

- We can now define "consistent renaming".
- Suppose $y \notin FV(e_2)$. Then we can rename a let-expression as follows:

$$\mathtt{let}\ x = e_1\ \mathtt{in}\ e_2 \leadsto_\alpha \mathtt{let}\ y = e_1\ \mathtt{in}\ e_2(x {\leftrightarrow} y)$$

- This is called alpha-conversion.
- Two expressions are alpha-equivalent if we can convert one to the other using alpha-conversions.

Examples

• Examples:

But

let
$$x = y + z$$
 in $x == w \not \rightarrow_{\alpha}$ let $w = y + z$ in $w == w$
because w already appears in $x == w$.

Evaluation for let and variables

- One approach: whenever we see let $x = e_1$ in e_2 ,
 - lacktriangledown evaluate e_1 to v_1
 - 2 replace x with v_1 in e_2 and evaluate that

$e \Downarrow v$ for L_{Let}

$$\frac{e_1 \Downarrow v_1 \quad e_2[v_1/x] \Downarrow v_2}{\text{let } x = e_1 \text{ in } e_2 \Downarrow v_2}$$

- Note: We always substitute values for variables, and do not need a rule for "evaluating" a variable
- This evaluation strategy is called eager, strict, or (for historical reasons) call-by-value
- This is a design choice. We will revisit this choice (and consider alternatives) later.

Substitution-based interpreter

```
type Variable = String
case class Var(x: Variable) extends Expr
case class Let(x: Variable, e1: Expr, e2: Expr)
 extends Expr
def eval(e: Expr): Value = e match {
 case Let(x.e1.e2) => {
   val v = eval(e1):
   val e2vx = subst(e2, v, x);
   eval(e2vx)
```

Note: No case for Var(x).

- Once we add variables to our language, how does that affect typing?
- Consider

$$let x = e_1 in e_2$$

When is this well-formed? What type does it have?

- Consider a variable on its own: what type does it have?
- Different occurrences of the same variable in different scopes could have different types.
- We need a way to keep track of the types of variables

Types for variables and let, informally

- Suppose we have a way of keeping track of the types of variables (say, some kind of map or table)
- When we see a variable x, look up its type in the map.
- When we see a let x = e₁ in e₂, find out the type of e₁.
 Suppose that type is τ₁. Add the information that x has type τ₁ to the map, and check e₂ using the augmented map.
- Note: The local information about x's type should not persist beyond typechecking its scope e_2 .

Types for variables and let, informally

• For example:

$$let x = 1 in x + 1$$

is well-formed: we know that x must be an int since it is set equal to 1, and then x+1 is well-formed because x is an int and 1 is an int.

On the other hand,

let
$$x = 1$$
 in if x then 42 else 17

is not well-formed: we again know that x must be an int while checking if x then 42 else 17, but then when we check that the conditional's test x is a bool, we find that it is actually an int.

Type Environments

• We write Γ to denote a *type environment*, or a finite map from variable names to types, often written as follows:

$$\Gamma ::= x_1 : \tau_1, \ldots, x_n : \tau_n$$

- In Scala, we can use the built-in type ListMap[Variable, Type] for this.
 - hey, maybe that's why the Lab has all that stuff about ListMaps!
- Moreover, we write Γ(x) for the type of x according to Γ and Γ, x : τ to indicate extending Γ with the mapping x to τ.

Types for variables and let, formally

• We now generalize the ideas of well-formedness:

Definition (Well-formedness in a context)

We write $\Gamma \vdash e : \tau$ to indicate that e is well-formed at type τ (or just "has type τ ") in context Γ .

• The rules for variables and let-binding are as follows:

$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash x : \tau} \text{ for } \mathsf{L}_{\mathsf{Let}}$ $\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \tau_2}$

Types for variables and let, formally

• We also need to generalize the L_{If} rules to allow contexts:

```
 \begin{array}{c|c} \hline \Gamma \vdash e : \tau & \text{for } \mathsf{L}_{\mathsf{lf}} \\ \\ \hline \hline \Gamma \vdash n : \mathsf{int} & \hline \hline \Gamma \vdash e_1 : \tau_1 & \Gamma \vdash e_2 : \tau_2 & \oplus : \tau_1 \times \tau_2 \to \tau \\ \hline \hline \Gamma \vdash e_1 \oplus e_2 : \tau & \hline \hline \hline \Gamma \vdash e : \mathsf{bool} & \Gamma \vdash e_1 : \tau & \Gamma \vdash e_2 : \tau \\ \hline \hline \Gamma \vdash \mathsf{if} \ e \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 : \tau & \hline \end{array}
```

- This is straightforward: we just add Γ everywhere.
- The previous rules are special cases where Γ is empty.

Examples, revisited

We can now typecheck as follows:

$$\frac{\overline{x: \mathtt{int} \vdash x: \mathtt{int}} \quad \overline{x: \mathtt{int} \vdash 1: \mathtt{int}}}{x: \mathtt{int} \vdash x: \mathtt{int}}$$

$$\vdash \mathtt{let} \quad x = 1 \ \mathtt{in} \quad x + 1: \mathtt{int}$$

On the other hand:

is not derivable because the judgment $x : int \vdash x : bool isn't$.

Summary

- Today we've covered:
 - Variables that can be substituted with values
 - Scope and binding, alpha-equivalence
 - Let-binding and how it affects typing and evaluation

Next time:

- Functions and function types
- Recursion