Elements of Programming Languages
 Lecture 5: Functions and recursion

James Cheney
University of Edinburgh

October 5, 2023

Overview

- So far, we've covered
- arithmetic
- booleans, conditionals (if then else)
- variables and simple binding (let)
- $L_{\text {Let }}$ allows us to compute values of expressions
- and use variables to store intermediate values
- but not to define computations on unknown values.
- That is, there is no feature analogous to Haskell's functions, Scala's def, or methods in Java.
- Today, we consider functions and recursion

Named functions

- A simple way to add support for functions is as follows:

$$
e::=\cdots|f(e)| \text { let fun } f(x: \tau)=e_{1} \text { in } e_{2}
$$

- Meaning: Define a function called f that takes an argument x and whose result is the expression e_{1}.
- Make f available for use in e_{2}.
- (That is, the scope of x is e_{1}, and the scope of f is e_{2}.)
- This is pretty limited:
- for now, we consider one-argument functions only.
- no recursion
- functions are not first-class "values" (e.g. can only call f, can't pass a function as an argument to another)

Examples

- We can define a squaring function:

$$
\text { let fun square }(x: \text { int })=x \times x \text { in } \cdots
$$

- or (assuming inequality tests) absolute value:
let fun $a b s(x:$ int $)=$ if $x<0$ then $-x$ else x in \cdots

Types for named functions

- We introduce a type constructor $\tau_{1} \rightarrow \tau_{2}$, meaning "the type of functions taking arguments in τ_{1} and returning $\tau_{2}{ }^{\prime \prime}$
- We can typecheck named functions as follows:

$$
\begin{gathered}
\Gamma, x: \tau_{1} \vdash e_{1}: \tau_{2} \quad \Gamma, f: \tau_{1} \rightarrow \tau_{2} \vdash e_{2}: \tau \\
\Gamma \vdash \text { let fun } f\left(x: \tau_{1}\right)=e_{1} \text { in } e_{2}: \tau \\
\frac{\Gamma(f)=\tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e: \tau_{1}}{\Gamma \vdash f(e): \tau_{2}}
\end{gathered}
$$

- For convenience, we just use a single environment 「 for both variables and function names.

Example

Typechecking of abs(-42)

$$
\frac{\frac{\Gamma(x)=\text { int }}{\frac{\Gamma \vdash x: \text { int }}{\Gamma \vdash 0: \text { int }}} \frac{\frac{\Gamma(x)=\text { int }}{\Gamma \vdash x: \text { int }}}{\Gamma \vdash 0: \text { bool }}}{\frac{\Gamma \vdash(x)=\text { int }}{\Gamma \vdash \text { if } x<0 \text { then }-x \text { int } x: \text { int }}} \frac{\Gamma \text { int }}{\Gamma \vdash x:}
$$

$$
\frac{\vdots}{\overline{\Gamma \vdash e_{a b s}: \text { int }} \frac{\overline{a b s: \text { int } \rightarrow \text { int } \vdash-42: \text { int }}}{\frac{a b s: \text { int } \rightarrow \text { int } \vdash a b s(-42): \text { int }}{\vdash \text { let fun } a b s(x: \text { int })=e_{a b s} \text { in } a b s(-42): \text { int }}} \text { }}
$$

where $e_{a b s}=$ if $x<0$ then $-x$ else x and $\Gamma=x$:int.

Semantics of named functions

- We can define rules for evaluating named functions as follows.
- First, let δ be an environment mapping function names f to their "definitions", which we'll write as $\langle x \Rightarrow e\rangle$.
- When we encounter a function definition, add it to δ.

$$
\frac{\delta\left[f \mapsto\left\langle x \Rightarrow e_{1}\right\rangle\right], e_{2} \Downarrow v}{\delta, \text { let fun } f(x: \tau)=e_{1} \text { in } e_{2} \Downarrow v}
$$

- When we encounter an application, look up the definition and evaluate the body with the argument value substituted for the argument:

$$
\frac{\delta, e_{0} \Downarrow v_{0} \quad \delta(f)=\langle x \Rightarrow e\rangle \quad \delta, e\left[v_{0} / x\right] \Downarrow v}{\delta, f\left(e_{0}\right) \Downarrow v}
$$

Examples

Evaluation of $a b s(-42)$

$$
\begin{gathered}
\frac{\delta,-42<0 \Downarrow \text { true } \quad \delta,-(-42) \Downarrow 42}{\delta, \text { if }-42<0 \text { then }-(-42) \text { else }-42 \Downarrow 42} \\
\frac{\delta,-42 \Downarrow-42 \quad \delta(a b s)=\left\langle x \Rightarrow e_{a b s}\right\rangle \quad \frac{\delta, e_{a b s}[-42 / x] \Downarrow 42}{\delta, a b s(-42) \Downarrow 42}}{\frac{\vdots}{\text { let fun } a b s(x: \text { int })=e_{a b s} \text { in } \operatorname{abs}(-42) \Downarrow 42}}
\end{gathered}
$$

where $e_{a b s}=$ if $x<0$ then $-x$ else x and
$\delta=\left[a b s \mapsto\left\langle x \Rightarrow e_{a b s}\right\rangle\right]$

Static vs. dynamic scope

- The terms static and dynamic scope are sometimes used.
- In static scope, the scope and binding occurrences of all variables can be determined from the program text, without actually running the program.
- In dynamic scope, this is not necessarily the case: the scope of a variable can depend on the context in which it is evaluated at run time.

Static vs. dynamic scope

- Function bodies can contain free variables. Consider:

$$
\begin{aligned}
& \text { let } x=1 \text { in } \\
& \text { let } \text { fun } f(y: \text { int })=x+y \text { in } \\
& \text { let } x=10 \text { in } f(3)
\end{aligned}
$$

- Here, x is bound to 1 at the time f is defined, but re-bound to 10 when by the time f is called.
- There are two reasonable-seeming result values, depending on which x is in scope:
- Static scope uses the binding $x=1$ present when f is defined, so we get $1+3=4$.
- Dynamic scope uses the binding $x=10$ present when f is used, so we get $10+3=13$.

Dynamic scope breaks type soundness

- Even worse, what if we do this:

$$
\begin{aligned}
& \text { let } x=1 \text { in } \\
& \text { let fun } f(y: \text { int })=x+y \text { in } \\
& \text { let } x=\text { true in } f(3)
\end{aligned}
$$

- When we typecheck f, x is an integer, but it is re-bound to a boolean by the time f is called.
- The program as a whole typechecks, but we get a run-time error: dynamic scope makes the type system unsound!
- Early versions of LISP used dynamic scope, and it is arguably useful in an untyped language.
- Dynamic scope is now generally acknowledged as a mistake, though present in e.g. JavaScript, Python

Anonymous, first-class functions

- In many languages (including Java as of version 8), we can also write an expression for a function without a name:

$$
\lambda x: \tau . e
$$

- Here, λ (Greek letter lambda) introduces an anonymous function expression in which x is bound in e.
- (The λ-notation dates to Church's higher-order logic (1940); there are several competing stories about why λ is used.)
- In Scala one writes: (x: Type) \Rightarrow e
- In Java 8: x \rightarrow e (no type needed)
- In Haskell: \x $->$ e or \x::Type -> e
- The lambda-calculus is a model of anonymous functions

Types for the λ-calculus

- We define $L_{\text {Lam }}$ to be $L_{\text {Let }}$ extended with typed λ-abstraction and application as follows:

$$
\begin{aligned}
e & ::=\cdots\left|e_{1} e_{2}\right| \lambda x: \tau . e \\
\tau & ::=\cdots \mid \tau_{1} \rightarrow \tau_{2}
\end{aligned}
$$

- $\tau_{1} \rightarrow \tau_{2}$ is (again) the type of functions from τ_{1} to τ_{2}.
- We can extend the typing rules as follows:
$\Gamma \vdash e: \tau$ for $L_{\text {Lam }}$

$$
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}}
$$

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}}
$$

Evaluation for the λ-calculus

- Values are extended to include λ-abstractions λx. e:

$$
v::=\cdots \mid \lambda x . e
$$

(Note: We elide the type annotations when not needed.)

- and the evaluation rules are extended as follows:

$e \Downarrow v$ for $L_{\text {Lam }}$

$$
\overline{\lambda x . e \Downarrow \lambda x . e} \quad \frac{e_{1} \Downarrow \lambda x . e \quad e_{2} \Downarrow v_{2} \quad e\left[v_{2} / x\right] \Downarrow v}{e_{1} e_{2} \Downarrow v}
$$

- Note: Combined with let, this subsumes named functions! We can just define let fun as "syntactic sugar"
let fun $f(x: \tau)=e_{1}$ in $e_{2} \Longleftrightarrow$ let $f=\lambda x: \tau . e_{1}$ in e_{2}

Examples

- In $L_{\text {Lam }}$, we can define a higher-order function that calls its argument twice:
let fun twice $(f: \tau \rightarrow \tau)=\lambda x: \tau . f(f(x))$ in \cdots
- and we can define the composition of two functions:
let compose $=\lambda f: \tau_{2} \rightarrow \tau_{3} . \lambda g: \tau_{1} \rightarrow \tau_{2} . \lambda x: \tau_{1} . f(g(x))$ in \cdots
- Notice we are using repeated λ-abstractions to handle multiple arguments

Recursive functions

- However, $L_{\text {Lam }}$ still cannot express general recursion, e.g. the factorial function:

$$
\begin{aligned}
& \text { let fun fact }(n: \text { int })= \\
& \quad \text { if } n==0 \text { then } 1 \text { else } n \times \operatorname{fact}(n-1) \text { in } \cdots
\end{aligned}
$$

is not allowed because fact is not in scope inside the function body.

- We can't write it directly as a λ-expression $\lambda x: \tau$. e either because we don't have a "name" for the function we're trying to define inside e.
- (Technically, we could get around this problem in an untyped version of the lambda calculus...)

Named recursive functions

- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)
- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, F\#)
let $f(x)=e \quad / /$ nonrecursive:
// only x is in scope in e
let $\operatorname{rec} f(x)=e / /$ recursive:
// both f and x in scope in e
- Note: In the untyped λ-calculus, let rec is definable using a special λ-term called the Y combinator

Anonymous recursive functions

- Inspired by $\mathrm{L}_{\text {Lam }}$, we introduce a notation for anonymous recursive functions:

$$
e::=\cdots \mid \operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2} . e
$$

- Idea: f is a local name for the function being defined, and is in scope in e, along with the argument x.
- We define $L_{\text {Rec }}$ to be $L_{\text {Lam }}$ extended with rec.
- We can then define let rec as syntactic sugar:

$$
\begin{aligned}
& \text { let } \operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2}=e_{1} \text { in } e_{2} \\
& \quad \Longleftrightarrow \operatorname{let} f=\operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2} . e_{1} \text { in } e_{2}
\end{aligned}
$$

- Note: The outer f is in scope in e_{2}, while the inner one is in scope in e_{1}. The two f bindings are unrelated.

Anonymous recursive functions: typing

- The types of $L_{\text {Rec }}$ are the same. We just add one rule:
$\Gamma \vdash e: \tau$ for $L_{R e c}$

$$
\frac{\Gamma, f: \tau_{1} \rightarrow \tau_{2}, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2} \cdot e: \tau_{1} \rightarrow \tau_{2}}
$$

- This says: to typecheck a recursive function,
- bind f to the type $\tau_{1} \rightarrow \tau_{2}$ (so that we can call it as a function in e),
- bind x to the type τ_{1} (so that we can use it as an argument in e),
- typecheck e.
- Since we use the same function type, the existing function application rule is unchanged.

Anonymous recursive functions: semantics

- Like a λ-term, a recursive function is a value:

$$
v::=\cdots \mid \operatorname{rec} f(x) . e
$$

- We can evaluate recursive functions as follows:

$e \Downarrow v$ for $L_{\text {Rec }}$

$$
\begin{gathered}
\overline{\operatorname{rec} f(x) . e \Downarrow \operatorname{rec} f(x) \cdot e} \\
\left.\frac{e_{1} \Downarrow \operatorname{rec} f(x) . e}{} \quad e_{2} \Downarrow v_{2} \quad \text { e[rec } f(x) \cdot e / f, v_{2} / x\right] \Downarrow v \\
e_{1} e_{2} \Downarrow v
\end{gathered}
$$

- To apply a recursive function, we substitute the argument for x and the whole rec expression for f.

Examples

- We can now write, typecheck and run fact
- (you will implement an evaluator for $L_{\text {Rec }}$ in Assignment 2 that can do this)
- In fact, $\mathrm{L}_{\text {Rec }}$ is Turing-complete (though it is still so limited that it is not very useful as a general-purpose language)
- (Turing complete means: able to simulate any Turing machine, that is, any computable function / any other programming language. ITCS covers Turing completeness and computability in depth.)

Mutual recursion

- What if we want to define mutually recursive functions?
- A simple example:
def even(n : Int) $=$ if $n=0$ then true else odd $(n-1)$
def odd(n: Int) $=$ if $n=0$ then false else even $(\mathrm{n}-1)$
Perhaps surprisingly, we can't easily do this!
- One solution: generalize let rec:
let $\operatorname{rec} f_{1}\left(x_{1}: \tau_{1}\right): \tau_{1}^{\prime}=e_{1}$ and \cdots and $f_{n}\left(x_{n}: \tau_{n}\right): \tau_{n}^{\prime}=e_{n}$ in e
where f_{1}, \ldots, f_{n} are all in scope in bodies e_{1}, \ldots, e_{n}.
- This gets messy fast; we'll revisit this issue later.

Summary

- Today we have covered:
- Named functions
- Static vs. dynamic scope
- Anonymous functions
- Recursive functions
- along with our first "composite" type, the function type $\tau_{1} \rightarrow \tau_{2}$.
- Next time
- Data structures: Pairs (combination) and variants (choice)

