Elements of Programming Languages
Lecture 5: Functions and recursion

James Cheney
University of Edinburgh
October 5, 2023
Overview

- So far, we’ve covered
 - arithmetic
 - booleans, conditionals (if then else)
 - variables and simple binding (let)
- Let allows us to compute values of expressions
 and use variables to store intermediate values
 but not to define *computations* on unknown values.
- That is, there is no feature analogous to Haskell’s functions, Scala’s `def`, or methods in Java.
- Today, we consider *functions* and *recursion*
A simple way to add support for functions is as follows:

\[e ::= \cdots \mid f(e) \mid \text{let fun } f(x : \tau) = e_1 \text{ in } e_2 \]

Meaning: Define a function called \(f \) that takes an argument \(x \) and whose result is the expression \(e_1 \).
Make \(f \) available for use in \(e_2 \).
(That is, the scope of \(x \) is \(e_1 \), and the scope of \(f \) is \(e_2 \).)
This is pretty limited:
- for now, we consider one-argument functions only.
- no recursion
- functions are not first-class “values” (e.g. can only call \(f \), can’t pass a function as an argument to another)
Examples

- We can define a squaring function:

 `let fun square(x : int) = x × x in ···`

- or (assuming inequality tests) absolute value:

 `let fun abs(x : int) = if x < 0 then −x else x in ···`
Types for named functions

- We introduce a *type constructor* \(\tau_1 \rightarrow \tau_2 \), meaning “the type of functions taking arguments in \(\tau_1 \) and returning \(\tau_2 \)”.

- We can typecheck named functions as follows:

 \[
 \Gamma, x : \tau_1 \vdash e_1 : \tau_2 \quad \Gamma, f : \tau_1 \rightarrow \tau_2 \vdash e_2 : \tau
 \]
 \[
 \Gamma \vdash \text{let fun } f(x : \tau_1) = e_1 \text{ in } e_2 : \tau
 \]

 \[
 \Gamma(f) = \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e : \tau_1
 \]
 \[
 \Gamma \vdash f(e) : \tau_2
 \]

- For convenience, we just use a single environment \(\Gamma \) for both variables and function names.
Example

Typechecking of $\text{abs}(-42)$

\[
\begin{align*}
\Gamma(x) &= \text{int} \\
\Gamma \vdash x : \text{int} & \quad \Gamma \vdash 0 : \text{int} & \quad \Gamma \vdash x : \text{int} & \quad \Gamma(x) = \text{int} \\
\Gamma \vdash x < 0 : \text{bool} & \quad \Gamma \vdash -x : \text{int} & \quad \Gamma \vdash x : \text{int} \\
\Gamma \vdash \text{if} \; x < 0 \; \text{then} \; -x \; \text{else} \; x : \text{int} \\
\vdash \text{let} \; \text{fun} \; \text{abs}(x : \text{int}) = e_{abs} \; \text{in} \; \text{abs}(-42) : \text{int} \\
\end{align*}
\]

where $e_{abs} = \text{if} \; x < 0 \; \text{then} \; -x \; \text{else} \; x$ and $\Gamma = x : \text{int}$.
Semantics of named functions

- We can define rules for evaluating named functions as follows.
- First, let δ be an environment mapping function names f to their “definitions”, which we’ll write as $\langle x \Rightarrow e \rangle$.
- When we encounter a function definition, add it to δ.

$$
\delta[f \mapsto \langle x \Rightarrow e_1 \rangle], \ e_2 \Downarrow v \\
\vdash \delta, \text{let } \text{fun } f(x : \tau) = e_1 \text{ in } e_2 \Downarrow v
$$

- When we encounter an application, look up the definition and evaluate the body with the argument value substituted for the argument:

$$
\delta, e_0 \Downarrow v_0 \quad \delta(f) = \langle x \Rightarrow e \rangle \quad \delta, e[v_0/x] \Downarrow v \\
\vdash \delta, f(e_0) \Downarrow v
$$
Examples

Evaluation of $\text{abs}(-42)$

$$
\delta, -42 < 0 \Downarrow \text{true} \quad \delta, -(42) \Downarrow 42
\delta, \text{if } -42 < 0 \text{ then } -(42) \text{ else } -42 \Downarrow 42
$$

$$
\delta, -42 \Downarrow -42 \\
\delta(\text{abs}) = \langle x \mapsto e_{\text{abs}} \rangle \\
\delta, e_{\text{abs}}[-42/x] \Downarrow 42 \\
\delta, \text{abs}(-42) \Downarrow 42
$$

let fun $\text{abs}(x : \text{int}) = e_{\text{abs}}$ in $\text{abs}(-42) \Downarrow 42$

where $e_{\text{abs}} = \text{if } x < 0 \text{ then } -x \text{ else } x$ and

$\delta = [\text{abs} \mapsto \langle x \mapsto e_{\text{abs}} \rangle]$
The terms *static* and *dynamic* scope are sometimes used.

In **static scope**, the scope and binding occurrences of all variables can be determined from the program text, *without* actually running the program.

In **dynamic scope**, this is not necessarily the case: the scope of a variable can depend on the context in which it is evaluated *at run time*.
Static vs. dynamic scope

- Function bodies can contain free variables. Consider:

  ```
  let x = 1 in
  let fun f(y : int) = x + y in
  let x = 10 in f(3)
  ```

- Here, \(x \) is bound to 1 at the time \(f \) is defined, but re-bound to 10 when by the time \(f \) is called.

- There are two reasonable-seeming result values, depending on which \(x \) is in scope:
 - **Static scope** uses the binding \(x = 1 \) present when \(f \) is defined, so we get \(1 + 3 = 4 \).
 - **Dynamic scope** uses the binding \(x = 10 \) present when \(f \) is used, so we get \(10 + 3 = 13 \).
Dynamic scope breaks type soundness

- Even worse, what if we do this:

  ```
  let x = 1 in
  let fun f(y : int) = x + y in
  let x = true in f(3)
  ```

- When we typecheck `f`, `x` is an integer, but it is re-bound to a boolean by the time `f` is called.

- The program as a whole typechecks, but we get a run-time error: *dynamic scope makes the type system unsound!*

- Early versions of LISP used dynamic scope, and it is arguably useful in an untyped language.

- Dynamic scope is now generally acknowledged as a mistake, though present in e.g. JavaScript, Python
Anonymous, first-class functions

- In many languages (including Java as of version 8), we can also write an expression for a function without a name:

$$\lambda x : \tau. \ e$$

- Here, λ (Greek letter lambda) introduces an anonymous function expression in which x is bound in e.
 - (The λ-notation dates to Church’s higher-order logic (1940); there are several competing stories about why λ is used.)

- In Scala one writes: $(x: \text{Type}) \Rightarrow e$
- In Java 8: $x \rightarrow e$ (no type needed)
- In Haskell: $\backslash x \rightarrow e$ or $\backslash x::\text{Type} \rightarrow e$
- The *lambda-calculus* is a model of anonymous functions
Types for the λ-calculus

- We define L_{Lam} to be L_{Let} extended with typed λ-abstraction and application as follows:

 \[e ::= \cdots | e_1 \ e_2 | \lambda x: \tau. \ e \]

 \[\tau ::= \cdots | \tau_1 \rightarrow \tau_2 \]

- $\tau_1 \rightarrow \tau_2$ is (again) the type of functions from τ_1 to τ_2.
- We can extend the typing rules as follows:

\[
\begin{array}{c}
\Gamma \vdash e : \tau \quad \text{for } L_{\text{Lam}} \\
\Gamma, x: \tau_1 \vdash e : \tau_2 \quad \Gamma \vdash \lambda x: \tau_1. \ e : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1 \\
\Gamma \vdash e_1 \ e_2 : \tau_2
\end{array}
\]
Evaluation for the λ-calculus

- Values are extended to include λ-abstractions $\lambda x. \ e$:

 $$\nu ::= \cdots | \lambda x. \ e$$

 (Note: We elide the type annotations when not needed.)

- and the evaluation rules are extended as follows:

 $$e \Downarrow \nu \quad \text{for } L_{Lam}$$

 $\lambda x. \ e \Downarrow \lambda x. \ e$

 $$\frac{e_1 \Downarrow \lambda x. e \quad e_2 \Downarrow \nu_2 \quad e[\nu_2/x] \Downarrow \nu}{e_1 \ e_2 \Downarrow \nu}$$

 Note: Combined with let, this subsumes named functions! We can just define let fun as “syntactic sugar”

 $$\text{let fun } f(x: \tau) = e_1 \text{ in } e_2 \iff \text{let } f = \lambda x: \tau. \ e_1 \text{ in } e_2$$
Examples

- In L_{Lam}, we can define a higher-order function that calls its argument twice:

 \[
 \text{let fun } \text{twice}(f : \tau \rightarrow \tau) = \lambda x : \tau. \ f(f(x)) \text{ in } \cdots
 \]

- and we can define the composition of two functions:

 \[
 \text{let compose } = \lambda f : \tau_2 \rightarrow \tau_3. \ \lambda g : \tau_1 \rightarrow \tau_2. \ \lambda x : \tau_1. \ f(g(x)) \text{ in } \cdots
 \]

- Notice we are using repeated λ-abstractions to handle multiple arguments
Recursive functions

- However, L_{Lam} still cannot express general recursion, e.g. the factorial function:

 \[
 \text{let fun } \text{fact}(n:\text{int}) = \\
 \quad \text{if } n == 0 \text{ then } 1 \text{ else } n \times \text{fact}(n - 1) \text{ in } \ldots
 \]

 is not allowed because fact is not in scope inside the function body.

- We can’t write it directly as a λ-expression $\lambda x : \tau. \ e$ either because we don’t have a “name” for the function we’re trying to define inside e.

 - (Technically, we could get around this problem in an untyped version of the lambda calculus...)
Named recursive functions

- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)
- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, F#)

```latex
let f(x) = e // nonrecursive:
    // only x is in scope in e
let rec f(x) = e // recursive:
    // both f and x in scope in e
```

- Note: In the *untyped* λ-calculus, `let rec` is *definable* using a special λ-term called the *Y combinator*
Anonymous recursive functions

- Inspired by L_{Lam}, we introduce a notation for anonymous recursive functions:

 $$e ::= \cdots | \text{rec } f(x: \tau_1): \tau_2. \ e$$

- Idea: f is a local name for the function being defined, and is in scope in e, along with the argument x.

- We define L_{Rec} to be L_{Lam} extended with `rec`.

- We can then define `let rec` as syntactic sugar:

 $$\text{let rec } f(x: \tau_1): \tau_2 = e_1 \text{ in } e_2 \iff \text{let } f = \text{rec } f(x: \tau_1): \tau_2. \ e_1 \text{ in } e_2$$

- Note: The outer f is in scope in e_2, while the inner one is in scope in e_1. The two f bindings are unrelated.
Anonymous recursive functions: typing

- The types of L_{Rec} are the same. We just add one rule:

$$\Gamma \vdash e : \tau$$ for L_{Rec}

$$\frac{\Gamma, f : \tau_1 \rightarrow \tau_2, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{rec } f(x:\tau_1) : \tau_2. e : \tau_1 \rightarrow \tau_2}$$

- This says: to typecheck a recursive function,
 - bind f to the type $\tau_1 \rightarrow \tau_2$ (so that we can call it as a function in e),
 - bind x to the type τ_1 (so that we can use it as an argument in e),
 - typecheck e.

- Since we use the same function type, the existing function application rule is unchanged.
Anonymous recursive functions: semantics

- Like a λ-term, a recursive function is a value:
 \[
 v ::= \cdots \mid \text{rec } f(x). \ e
 \]

- We can evaluate recursive functions as follows:

 \[
 e \Downarrow v
 \quad \text{for } \mathsf{L}_{\mathsf{Rec}}
 \]

 \[
 \begin{align*}
 \text{rec } f(x). \ e & \Downarrow \text{rec } f(x). \ e \\
 e_1 \Downarrow \text{rec } f(x). \ e & e_2 \Downarrow v_2 & e[\text{rec } f(x). \ e/f, v_2/x] \Downarrow v \\
 e_1 \quad e_2 & \Downarrow v
 \end{align*}
 \]

- To apply a recursive function, we substitute the argument for x and the whole rec expression for f.
Examples

- We can now write, typecheck and run \textit{fact}
 - (you will implement an evaluator for L_{Rec} in Assignment 2 that can do this)

- In fact, L_{Rec} is \textit{Turing-complete} (though it is still so limited that it is not very useful as a general-purpose language)

- (\textit{Turing complete} means: able to simulate any \textit{Turing machine}, that is, any computable function / any other programming language. ITCS covers Turing completeness and computability in depth.)
Mutual recursion

- What if we want to define mutually recursive functions?
- A simple example:

```python
def even(n: Int) = if n == 0 then true else odd(n-1)
def odd(n: Int) = if n == 0 then false else even(n-1)
```

Perhaps surprisingly, we can’t easily do this!

- One solution: generalize let rec:

```plaintext
let rec f_1(x_1: \tau_1) : \tau_1' = e_1 and \cdots and f_n(x_n: \tau_n) : \tau_n' = e_n in e
```

where f_1, \ldots, f_n are all in scope in bodies e_1, \ldots, e_n.

- This gets messy fast; we’ll revisit this issue later.
Summary

Today we have covered:

- Named functions
- Static vs. dynamic scope
- Anonymous functions
- Recursive functions

along with our first “composite” type, the function type \(\tau_1 \rightarrow \tau_2 \).

Next time

- Data structures: Pairs (combination) and variants (choice)